• Title/Summary/Keyword: Capillary column

Search Result 188, Processing Time 0.021 seconds

Dual Capillary Column System for the Qualitative Gas Chromatography: 2. Comparison between Splitless and On-Column Injection Modes

  • Kim, Kyoung-Rae;Kim, Jung-Han;Park, Hyoung-Kook;Oh, Chang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 1993
  • A dual capillary column system is described for the simultaneous analysis of a given sample and measurement of retention index (RI) and area ratio (AR) values of each peak on two capillary columns of different polarity, DB-5 & DB-1701 from a single injection. Both capillary columns were connected to either a splitless injector or an on-column injector via a deactivated fused-silica capillary tubing of 1 m length and a 'Y' splitter. Both injection modes allowed to measure RI and AR values with high reproducibility (<0.01% RSD) and high accuracy (<10% RE), respectively with the exception that the trace and high boiling solutes required the on-column mode for the accurate quantification and AR comparison. When the dual capillary column system in on-column injection mode was applied to the blind samples containing organic acids, each acid was positively indentified by the combined computer RI library search-AR comparison.

GC Capillary Column Installation (가스 크로마토그래피 캐필러리 컬럼 설치 가이드)

  • Matt James;Kirsty Ford
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.2.1-2.6
    • /
    • 2024
  • This article provides detailed instructions for the correct installation, maintenance, and troubleshooting of capillary gas chromatography (GC) columns. It emphasizes the importance of proper installation to ensure optimal performance and longevity of the column. The document covers various aspects such as column trimming, installation, conditioning, testing, storage, and ferrule selection. The installation process involves ensuring that the heated zones of the GC are cool before placing the column cage in the column oven. It is essential to avoid sharp bends or stress on the capillary column during installation and to connect the front end of the column into the GC inlet at the recommended insertion distance. The document also provides guidance on trimming the column, including the use of a ceramic wafer or capillary column cutter to achieve a clean, burr-free cut. For previously used columns, it recommends removing any capillary caps, positioning the nut and ferrule, and trimming 1-2 cm from the column. After installation, the column should be purged with carrier gas to remove any oxygen and avoid oxidizing the column. Conditioning the column involves ramping to the upper isothermal temperature limit and maintaining this temperature for a specified duration. It is crucial to maintain carrier gas flow during conditioning and not exceed the upper temperature limit of the column to avoid phase damage. The document also discusses testing column performance using a suitable method and performing a test injection to assess performance. It provides recommendations for column storage, including flame-sealing the capillary ends or using retention gaps for long-term storage. Additionally, it emphasizes the importance of routine maintenance and replacement of GC consumables to extend the column's lifetime. Ferrule selection is another important aspect covered in the article, with a variety of ferrule materials available for different applications. The characteristics of common ferrule options are presented in a table, including temperature limits, reusability, and suitability for specific detector types.

  • PDF

Development of Capillary Columns for Ion Chromatography (이온 크로마토그래피용 모세관 컬럼의 개발)

  • Kim, Ho-Hyun;Pyo, Dong-Jin
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.521-527
    • /
    • 1999
  • In this study, capillary columns for ion chromatography were developed to analyze trace amount of ions in samples. When small I.D. capillary columns are used in ion chromatography, the typical flow rate of the mobile phase is $5{\sim}15{\mu}L/min$ and the typical column length is 50~150 mm. The capillary columns were made using RSL-300 fused silica capillary(I.D.: 0.53 mm, O.D.: 0.67 mm) and AG14 column resin(support : polystyrene-divinylbenzene, functional group : alkyl quaternary ammonium). The new conductivity cell and suppressor were also developed and made for capillary column ion chromatography. When several anions (fluoride, nitrite, nitrate, chlorate) were analyzed using these capillary columns, reproducible and good chromatograms were obtained.

  • PDF

Development of Open Tubular Capillary Columns for Ion Chromatography (이온 크로마토그래피용 Open Tubular Capillary 컬럼의 개발)

  • Pyo, Dong Jin;Kim, Ho Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, open tubular capillary columns for ion charomatography were developed to analyze trace amount of ions in samples. When small I,D. capillary column length is 1.0~5.0 m. The capillary columns were made using fused silica capillary(I.D:50㎛) and DMEOHA latex particles. The new conductivity cell and suppressor were also developed and made for capillary column ion chromatography. When several anions(fluoride, nitrite, nitale,chlorate,phosphte, sulfate) were analyzed using these capillary columns. reproducible and good chromatograms were obtained.

  • PDF

Temperature-controlled Restrictor for UV Detection in Capillary Supercritical Fluid Chromatography

  • Pyo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1429-1432
    • /
    • 2006
  • Polyaromatic hydrocarbons were separated by a capillary supercritical fluid chromatographic (SFC) column and detected by a UV detector at the wavelength of 280 $\mu$m. The temperature-controlled restrictor was designed for UV detection. The temperature-controlled restrictor is a 20 cm length of deactivated fused silica of 7 mm i.d. which is held right after UV detector of the capillary SFC. The temperature of the restrictor will control the flow rate of the supercritical carbon dioxide mobile phase through the capillary column in SFC. Thus as the pressure in the column is increased from 1500 psi to 4000 psi during a pressure program, the temperature of 7 $\mu$m fused-silica tube can be varied from 100 to 350 ${^{\circ}C}$ to maintain a constant flow rate.

Studies on Analysis of Sterols in Mayonnaise by GLC with Packed and Capillary Column (충전컬럼 및 모세관컬럼 가스크로마토그라프에 의한 마요네즈 중의 스테롤 분석연구)

  • Kim, Hyean-Wee;Jeong, So-Young;Jeong, Chang-Ki;Yoon, Hyeong-Sik;Park, Ki-Moon;Ahn, Peong-Ug;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.82-85
    • /
    • 1992
  • Sterols in mayonnaise were determined by the gas liquid chromatographic(GLC) analysis using two different columns, packed column(silicone SE30) and fused silica capillary column(CBPl). Four kinds of sterol(cholesterol, campesterol, stigmasterol and ${\beta}-sitosterol$) were detected in mayonnaise. The method using capillary column proved to be superior in rapidity, reproducerbility and separability for the determination of sterols. The ranges of concentration of egg york in mayonnaise predicted from cholesterol content using packed and capillary columns were $2.69{\sim}7.11%\;and\;2.42{\sim}6.08%$, respectively. Analyzing the composition of campesterol, stigmasterol and (${\beta}-sitosterol$ in mayonnaise, it could be known that soybean oil and cottonseed oil are commonly used for the manufacture of mayonnaise.

  • PDF

Effects of Column Length and Particle Diameter on Phospholipid Analysis by Nanoflow Liquid Chromatography-Electrospray Ionization-Mass Spectrometry

  • Lee, Ju-Yong;Lim, Sang-Soo;Moon, Myeong-Hee
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.65-68
    • /
    • 2011
  • The effects of column length and particle size on the efficiency of separation and characterization of phospholipids (PLs) are investigated using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Since PLs are associated with cell proliferation, apoptosis, and signal transduction, it is of increasing interests in lipidomics to establish reliable analytical methods for the qualitative and quantitative profiling of PLs related to biomarker development in adult diseases. Due to the complexity of PLs, the preliminary separation of PLs is necessary prior to MS analysis. In this study, length of capillary column and the particle size of reversed phase ($C_{18}$) packing materials are varied to find a reliable condition for the high speed and high resolution separation using 8 PL standard mixtures. From experiments, it was found that a capillary column of nLC-ESI-MS-MS analysis for PL mixtures can be minimized to a 5 cm long pulled tip column packed with 3 ${\mu}m$ $C_{18}$ particles without losing resolution.

Simultaneous Gas Chromatographic Analysis of Ethanol and Acetic Acid in Vinegar (식초의 에탄올 및 초산 함량의 동시분석)

  • Yoon, Hee-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1247-1251
    • /
    • 1998
  • A method is developed for simultaneously determining ethanol and acetic acid in vinegars by quantitative packed-column gas chromatography. Vinegars were filtrated and directly chromatographed on a $2\;m{\times}2\;mm$ stainless steel column packed with Tenax-GC, 80/100. Ethanol, isopropy alcohol as an internal standard, and acetic acid were completely separated within 20 min of running time without any interfering peaks. The accuracy of packed column gas solid chromatography (PCGSC) was discussed compared to the analytical data by titration, high performance liquid chromatography and capillary column gas liquid chromatography (CCGLC).

  • PDF

Analysis of Molecular Species of Vegetable Oil Triglycerides by Capillary Column GC-MS (Capillary Column GC-MS에 의한 식물유 트리글리세리드 분자종의 분석)

  • Yoon, Hyeung-Sik;Kim, Seon-Bong;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.391-398
    • /
    • 1989
  • Triglyceride molecular species In some vegetable oils were analyzed by capillary column gas chromatography and electron impact ionization mass spectrometry utilizing selected ion monitoring. Triglycerides were separated according to their molecular weights and their degrees of unsaturation on $25m{\times}0.25mm$ fused silica open tubular capillary column coated with a phenylmethylsilicone gum stationary phase and in an analysis time less than 13 min. Triglyceride molecular species were identified by analyzing the fragment ions having the same time on the selected ion monitoring profile . The major triglyceride molecular species in each oils were $C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL:18.3%),\;C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;14.3%),\;C_{18:0}.\;C_{18:2}.\;C_{18:2}(SLL;\;14.1%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;13.2%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;11.6%)$ in corn oil, $C_{18:2}.\;C_{18:2}.\;C_{18:2}(LLL;\;18.0%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;18.0%),\;C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;17.1%)$ in safflower oil, $C_{16:0}.\;C_{18:2}.\;C_{18:2}(PLL;\;23.5%),\;C_{16:0}.\;C_{18:2}.\;C_{18:1}(PLO;\;13.8%),\;C_{18:0}.\;C_{18:1}.\;C_{18:1}(SOO;\;13.5%),\;C_{18:1}.\;C_{18:2}.\;C_{18:2}(OLL;\;10.6%)$ in cottonseed oil.

  • PDF