• 제목/요약/키워드: Capillary Tube

검색결과 246건 처리시간 0.022초

모세관 변경에 따른 가정용 소형 멀티 냉동시스템의 성능에 관한 연구 (A Study on the Performance of a Domestic Small Multi Refrigerator According to a Capillary Tube Change)

  • 김상욱;이무연
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.763-771
    • /
    • 2005
  • This paper is an experimental study on the performance according to a capillary tube diameter and length in a domestic small multi refrigerator[kimchi refrigerator]. Pressure drop in a capillary tube is predicted by theoretical analysis and experimental method as the reduction of capillary tube diameter from 0.74 to 0.6 mm. The differences between experimental results and analytical results are mainly caused by friction factor in a capillary tube. Because there are no adequate equations used to calculate pressure drop of capillary tube diameter under 1.0mm. The empirical equations necessary for interpretation of capillary tube were derived from capillary tube test results data using curve fitting method. This study shows that the optimized designs of system, which is capillary tube length and refrigerant charge amount, are 2000mm, 83g at the capillary tube diameter 0.6mm and 3000mm, 73g at the capillary tube diameter 0.74mm. And capillary design tools and system matching techniques necessary for development of the kimchi refrigerator were also developed through this study.

모세관 길이와 관경 변화에 따른 R-1270의 성능특성 (System Performance for Length and Diameter of Capillary Tube using R-1270)

  • 이호생;김현우;최원재;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.646-652
    • /
    • 2009
  • Experimental results for performance characteristics of HCs refrigerant R-1270 and HCFC refrigerant R-22 during refrigeration system using capillary tube are presented. The system consists of compressor, condenser, capillary tube, evaporator and peripheral devices. Length and diameter of capillary tube are varied for this investigation. The refrigerant mass flow increased as the diameter of capillary tube increased and the length of capillary tube decreased. A refrigeration capacity and compressor work of R-1270 in same length and diameter of capillary tube showed the higher values than those of R-22. A coefficient of performance showed the highest value when the length and diameter of capillary tube are 105 cm and 1.8 mm in this experimental conditions.

비정상유동장에서 모세관점도계의 점도측정 (Viscosity Measurement in the Capillary Tube Viscometer under Unsteady Flow)

  • 박흥준;유상신;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.825-828
    • /
    • 2000
  • The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load celt system oat measures the mass flow rate, interfacers, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and. driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force.

  • PDF

대체냉매의 모세관내 유동 시뮬레이션 (Numerical Simulation Model of Alternative Refrigerants Flow Through Capillary Tubes)

  • 장세동;노승택
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.55-64
    • /
    • 1996
  • A numerical model of refrigerant flow through a capillary tube is developed, which considers the effects of underpressure for vaporization, kinetic energy, and roughness of capillary tube. The numerical model is based on homogeneous flow assumptions for the two-phase flow region. A characteristic chart of HFC refrigerants flow through capillary tubes and correction factor chart of geometry and relative roughness of capillary tube to select a proper capillary for refrigerating machines using alternative refrigerants is presented by this numerical model.

  • PDF

모세관내 과도유동현상을 이용한 비뉴턴유체의 점도측정 (Viscosity Measurement of Non-Newtonian Fluids Using the Transient Flow Phenomena in the Capillary Tube)

  • 조민태;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.738-741
    • /
    • 2001
  • The purpose of the present study is to measure the viscosity of liquid in the capillary tube viscometer using the unsteady flow concept. The capillary tube viscometer is consisted of a small cylindrical reservoir, capillary tubes, and the mass flow rate measuring system interfaced with computer. Two capillary tubes with 1.152 and 3.002 mm I.D. are used to determine the diameter effects on the viscosity measurements. The instantaneous shear rate and gravitational driving force in the capillary tube are determined by measuring the mass flow rate through the capillary tube instantaneously. The measured viscosities of water and aqueous Separan solution are in good agreement with the reported experimental data.

  • PDF

$CO_2$ 단열 모세관내 유동 특성 (Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide)

  • 노건상;손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

Flow and Pressure Drop Characteristics of R22 in Adiabatic Capillary Tubes

  • Kim, Min-Soo;Kim, Sung-Goo;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1328-1338
    • /
    • 2001
  • The objective of this study is to present flow and pressure drop characteristics of R22 in adiabatic capillary tubes of inner diameters of 1.2 to 2.0mm, and tube lengths of 500 to 2000mm. Distributions of temperature and pressure along capillary tubes and the refrigerant flow rates through the tubes were measured for several condensing temperatures and various degrees of subcooling at the capillary tube inlet. Condensing temperatures of R22 were selected as 40, 45, and 50$^{\circ}C$ at the capillary tube inlet, and the degree of subcooling was adjusted to 1 to 18$^{\circ}C$. Experimental results including mass flow rates and pressure drops of R22 in capillary tubes were provided. A new correlation based on Buckingham II theorem to predict the mass flow rate through the capillary tube was presented considering major parameters which affect the flow and pressure drop characteristcis.

  • PDF

R32를 포함한 R22 대체 혼합냉매의 모세관 유동 특성 (Flow Characteristics of Refrigerant Mixtures with R32 in a Capillary Tube)

  • 장세동;노승탁
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.177-186
    • /
    • 1996
  • The characteristics of the flow of pure HFC refrigerants(R32, R125, and R134a) and their mixtures through capillary tubes were investigated experimentally. Two capillary tubes with 1.2mm and 1.6mm inner diameter and 1.5m length were adopted as test sections. Mass flow rates and temperatures and pressures were measured for several condensing temperatures and degrees of subcooling at capillary tube inlet. The effects of the condensing temperature, inner diameter of capillary tube, and subcooling on the mass flow rate of refrigerants were discussed, and the mass flow rates of HFC refrigerants were compared with that of R22. The pressure and temperature distributions along the capillary tube compared with that of R22. The pressure and temperature distributions along the capillary tube show that there is a metastable equilibrium state in the flow through the tube. Underpressure for vaporization increases as refrigerant mass flux increases and inlet subcooling decreases. Empirical correlation was suggested to predict underpressure for vaporization of the HFC refrigerants.

  • PDF

모세관 내경 축소에 따른 소형멀티 냉동시스템의 성능특성변화 (A Study on Performance Characteristics of R134a Variation with a Capillary Tube Diameter and Length in a Domestic Small multi Refrigerator [Kim_Chi Refrigerator])

  • 이무연;최석재;김상욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1598-1603
    • /
    • 2004
  • This paper is an experimental study on the performance characteristic with a variation of capillary diameter and length. The performance characteristic of a refrigeration system is predicted that it is occurring changes of flow pattern and pressure drop in a capillary tube because of reduction of capillary diameter 0.74 to 0.6 mm. The difference between experimental results and analytical results is mainly caused by values of friction factor for using to calculate pressure drop through a small diameter capillary tube under 0.74mm. The experimental equation is derived from capillary tube test data using curve fitting method.

  • PDF

Characteristics of Refrigerant Flow through Capillary Tubes and Short Tube Orifices

  • Kim, Yong-Chan;Choi, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.11-21
    • /
    • 1999
  • The capillary tube and short tube orifice have been widely used as an expansion device in the refrigeration and air-conditioning system. To improve the system performance, expansion devices need to be optimized with the components of a refrigeration system. In the present study, a numerical model for a capillary, which could predict the flow rate and properties along a tube, was developed by assuming homogeneous two-phase flow. A semi-empirical flow model for evaluation of the flow rate through a short tube orifice was also developed by using the experimental data. Finally, the results of the numerical model for a capillary was compared with those of the semi-empirical model for a short tube orifice to identify the dominant flow factors for the expansion devices.

  • PDF