• Title/Summary/Keyword: Capacity determination

Search Result 480, Processing Time 0.023 seconds

Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method (강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트)

  • 조백순;정진환;김성도;박대효;이우철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF

A Model Test on Uplift Behavior of Plate Anchor (Plate Anchor의 인발거동에 관한 모형실험)

  • Kim, Seo Seong;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gak;Yoo, Keon Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1219-1227
    • /
    • 1994
  • For Determination of the ultimate uplift capacity, the failure mechanism of the foundation by uplift should be correctly known. However, studies on the variation of the failure mechanism with the embedment ratio of anchor plate among those factors governing the uplift resistance are scarce. In this study. in an attempt to observe more clearly the variation of the failure mechanism with embedment ratio and to check applicability of existing formulae for the ultimate uplift capacity. a model test was performed with ground made of carbon rods, simulating a plane strain conditions. As a result, failure characteristics of shallow and deep anchor conditions were clearly classified. It was found that the analysis of a shallow anchor should be made prior to determination of the ultimate uplift capacity of a deep anchor.

  • PDF

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

말뚝기초의 연적 방향 극한하중

  • 김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.209-236
    • /
    • 2002
  • Ultimate pile capacity - Point resistance - Frictional resistance - Determination of point and frictional resistances from field tests - Summary of recommendations from design Group effects Settlement analysis.

  • PDF

A Study on the Measurement of Fishing Capacity and the Determination of Its Reduction Levels (어획능력(Fishing Capacity)의 측정과 감축수준 결정에 관한 연구 -기선권현망어업을 중심으로-)

  • Lee, Jung-Sam;Kim, Do-Hoon
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.439-449
    • /
    • 2006
  • This study was aimed at measuring the fishing capacity of Powered Anchovy Drag Net Fisheries (PADNF) in Korea using Peak-to-Peak(PTP) and Data Envelopment Analysis(DEA) methods recommended by FAO. In the analysis, both fishing capacities of total PADNF and individual PADNF vessels were measured with time series data and cross sectional data, respectively. In addition, the results of the DEA measurement were analyzed in order to determine reduction levels of fishing capacity. In case of total PADNF, the results by rn and DEA methods showed a similar rate of capacity utilization (79%), indicating the capacity was not utilized enough. In addition, the sensitivity analysis suggested that the number of vessels should be reduced by 20%, and the gross tonnage and the horse power should be reduced by 20% and 21%, respectively if the current catch is to stay at the 2004 level. The DEA results on individual PADNF vessels indicated the capacity utilization was 75% on average, showing some differences in capacity utilization among vessels (31%-100%). The results of the study would be useful for measuring production efficiency in PADNF. They would also provide good policy information for efficient use of resources and capacity reduction levels, which are useful far vessel buyback programs of coastal and offshore fisheries.

A Study on Social Carrying Capacity in Outdoor Recreation Setting: An Exploratory Analysis on the Perceived Crowding Path Model in National Park (옥외휴양공간에서의 사회적 수용능력연구: 국립공원에서의 혼잡지각의 경로모형 분석)

  • Park, Chung In
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The primary concerns of recreation plan are to provide visitors with quality of recreational experience and to protect of recreation resources. The quality of recreational experience is often defined in terms of social carrying capacity. The carrying capacity is revealed as perceived crowding. In this respects, measuring perceived crowding is useful tool of social carrying capacity determination. This study is to test the structural equation model that includes variables affecting perceived crowding. Through an on-site questionnaire survey, 467 visitors on Naejangsan national park were collected. The results of the study are follows. The encounter level on facility area is higher evaluated as crowding factor than other area in the park. It can be concluded that visitor perceived crowding when facility area situates high density use level rather than other areas expose high density use level. In the path analysis, the input variables(attitude, experience, encounter level) on the structural equation model affect significantly on perceived crowding. Especially, the attitude on the park management polocy is the most affecting factor on perceived crowding.