• Title/Summary/Keyword: Capacity Optimization

Search Result 846, Processing Time 0.025 seconds

Design of Additives and Electrolyte for Optimization of Electrode Characteristics of Ni-MH Secondary Battery at Room and Low Temperatures (Ni-MH 2차 전지의 상온 및 저온 전극특성 최적화를 위한 첨가제 및 전해질 설계)

  • Yang, D.C.;Park, C.N.;Park, C.J.;Choi, J.;Sim, J.S.;Jang, M.H.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.365-373
    • /
    • 2007
  • We optimized the compositions of electrolyte and additives for anode in Ni-MH battery to improve the electrode characteristics at ambient and low temperatures using response surface method(RSM). Among various additives for anode, PTFE exhibited the greatest influence on the discharge capacity of the anode. Through response optimization process, we found the optimum composition of the additives to exhibit the greatest discharge capacity. When the amount of additives was too small, the anode was degraded with time due to the low binding strength among alloy powders and the resultant separation of powders from the current collector. In contrast, the addition of large amount of the additives increased in the resistance of the electrode. In addition, the discharge capacity of the anode at $-18^{\circ}C$ increased with decreasing the concentration of KOH, NaOH and LiOH in design range of electrolyte. The resistance and viscosity of electrolyte appear to affect the discharge capacity of the anode at low temperature.

Threshold Selection Method for Capacity Optimization of the Digital Watermark Insertion (디지털 워터마크의 삽입용량 최적화를 위한 임계값 선택방법)

  • Lee, Kang-Seung;Park, Ki-Bum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2009
  • In this paper a watermarking algorithm is proposed to optimize the capacity of the digital watermark insertion in an experimental threshold using the characteristics of human visual system(HVS), adaptive scale factors, and weight functions based on discrete wavelet transform. After the original image is decomposed by a 3-level discrete wavelet transform, the watermarks for capacity optimization are inserted into all subbands except the baseband, by applying the important coefficients from the experimental threshold in the wavelet region. The adaptive scale factors and weight functions based on HVS are considered for the capacity optimization of the digital watermark insertion in order to enhance the robustness and invisibility. The watermarks are consisted of gaussian random sequences and detected by correlation. The experimental results showed that this algorithm can preserve a fine image quality against various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, sharpening, linear and non-linear filtering, etc.

  • PDF

Optimization Analysis of Driving Gear of Large Capacity Non-contact Mixer for MLCC Electronic Materials (MLCC 전자재료용 대용량 비접촉식 교반기 구동기어의 형상최적화 구조해석)

  • Choi, Byungju;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • MLCC is key parts of many electronic products and mixer is used to make MLCC. Currently, non-contact mixer is increasingly used due to its many merits. In case of large capacity non-contact mixer, function of driving gear is important. In this study, therefore, in order to reduce manufacturing cost through optimal design of driving gear of large capacity non-contact mixer, study on shape optimization of driving gear without excessive design modification was performed. As the results, because safety factors of modification model were decreased about 3.0 ~ 3.5 times compared with those of model with robust design, the possibility for saving manufacturing cost was confirmed.

Optimization of Thruster Catalyst Beds using Catalytic Decomposition Modeling of Hydrogen Peroxide (과산화수소 촉매분해 모델링을 이용한 추력기 촉매대 최적설계)

  • Jung, Sangwoo;Choi, Sukmin;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.746-752
    • /
    • 2017
  • High test hydrogen peroxide has been widely developed as green propellant for thrusters. Hydrogen peroxide is decomposed in the catalyst bed to produce the thrust. Catalyst bed design optimization is considered through existing model for catalyst beds. To verify the model, static firing tests were conducted under various conditions using a 100 N scale $H_2O_2$ monopropellant thruster. Temperature and pressure estimations from the model were well correlated to the experimental data. The model is used to obtain optimal design parameters by analyzing the catalyst capacity and pressure drop data for various simulated conditions. Catalyst beds can be optimized from the analysis of the catalyst capacity and pressure drop correlation through catalyst bed modeling.

  • PDF

Capacity Assignment and Routing for Interactive Multimedia Service Networks

  • Lim, Byung-Ha;Park, June-Sung
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.246-252
    • /
    • 2010
  • A binary linear integer program is formulated for the problem of expanding the capacity of a fiber optic network and routing the traffic to deliver new interactive multimedia services. A two-phase Lagrangian dual search procedure and a Lagrangian heuristic are developed. Computational results show superior performance of the two-phase subgradient optimization compared with the conventional one-phase approach.

An Optimal Solution Algorithm for Capacity Allocation Problem of Airport Arrival-Departure

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.77-83
    • /
    • 2015
  • This paper suggests heuristic algorithm to obtain optimal solution of minimum number of delay aircraft in airport arrivals/departures problem. This problem can be solved only mathematical optimization method. The proposed algorithm selects the minimum delays capacity in various airport capacities for number of arrivals/departures aircraft in $i^{th}$ time interval (15 minutes). In details, we apply median selection method and left-right selection method. This algorithm can be get the optimal solution of minimum number of delay aircraft for sixes actual experimental data.

A Study on Suction Pump Impeller Form Optimization for Ballast Water Treatment System (선박평형수 처리용 흡입 펌프 임펠러 형상 최적화 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.121-129
    • /
    • 2022
  • With the recent increase in international trade volume the trade volume through ships is also continuously increasing. The treatment of ballast water goes through the following five steps, samples are taken and analyzed at each step, and samples are obtained using a suction pump. These suction pumps have low efficiency and thus need to be improved. In this study, it is to optimize the form of the impeller which affects directly improvements of performance to determine the capacity of suction pump and to fulfill the purpose of this research. To do it, we have carried out parametric design as an input variable, geometric form for the impeller. By conducting the flow analysis for the optimum form, it has confirmed the value of improved results and achieved the purpose to study in this paper. It has selected the necessary parameter for optimizing the form of the pump impeller and analyzed the property using experiment design. And it can reduce the factor of parameter for local optimization from findings to analyze the property of form parameter. To perform MOGA(Multi-Objective Genetic Algorithm) it has generated response surface using parameters for local optimization and conducts the optimization using multi-objective genetic algorithm. with created experiment cases, it has performed the computational fluid dynamics with model applying the optimized impeller form and checked that the capacity of the pump was improved. It could verify the validity concerning the improvement of pump efficiency, via optimization of pump impeller form which is suggested in this study.

A Network Capacity Model for Multimodal Freight Transportation Systems

  • Park, Min-Young;Kim, Yong-Jin
    • Journal of Korea Port Economic Association
    • /
    • v.22 no.1
    • /
    • pp.175-198
    • /
    • 2006
  • This paper presents a network capacity model that can be used as an analytical tool for strategic planning and resource allocation for multimodal transportation systems. In the context of freight transportation, the multimodal network capacity problem (MNCP) is formulated as a mathematical model of nonlinear bi-level optimization problem. Given network configuration and freight demand for multiple origin-destination pairs, the MNCP model is designed to determine the maximum flow that the network can accommodate. To solve the MNCP, a heuristic solution algorithm is developed on the basis of a linear approximation method. A hypothetical exercise shows that the MNCP model and solution algorithm can be successfully implemented and applied to not only estimate the capacity of multimodal network, but also to identify the capacity gaps over all individual facilities in the network, including intermodal facilities. Transportation agencies and planners would benefit from the MNCP model in identifying investment priorities and thus developing sustainable transportation systems in a manner that considers all feasible modes as well as low-cost capacity improvements.

  • PDF

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.