• Title/Summary/Keyword: Capacity Expansion Planning Model

Search Result 38, Processing Time 0.024 seconds

Capacity Expansion Planning Model of Private Distribution Center Under Usability of Public Distribution Center (영업용 물류센터 사용하에서 자가 물류센터의 크기 확장계획 모형)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-79
    • /
    • 2010
  • This paper addresses capacity expansion planning model of distribution center under usability of public distribution center. For discrete and finite time periods, demands for distribution center increase dynamically. The capacity expansion planning is to determine the capacity expansion size of private distribution center and usage size of public distribution center for each period through the time periods. The capacity expansion of private distribution center or lease usage of public distribution center must be done to satisfy demand increase for distribution center. The costs are capacity expansion cost and excess capacity holding cost of private distribution center, lease usage cost of public distribution center. Capacity expansion planning of minimizing the total costs is mathematically modelled. The properties of optimal solution are characterized and a dynamic programming algorithm is developed. A numerical example is shown to explain the problem.

A Capacity Expansion Planning Model for Single-Facility with Two Distinct Capacity Type (두개의 차별적인 용량형태를 갖는 단일설비에 대한 용량 확장계획 모형)

  • Chang, Suk-Hwa
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 1990
  • A deterministic capacity expansion planning model for a two-capacity type facility is analyzed to determine the sizes to be expanded in each period so as to supply the known demands for two distinct capacity type(product) on time and to minimize the total cost incurred over a finite planning horizon of T periods. The model assumes that capacity unit of the facility simultaneously serves a prespecified number of demand units of each capacity type, that capacity type 1 can be used to supply demands for capacity type 2, but that capacity type 2 can't be used to supply demands for capacity type 1. Capacity expansion and excess capacity holding cost functions considered are nondecreasing and concave. The structure of an optimal solution is characterized and then used in developing an efficient dynamic programming algorithm that finds optimal capacity planning policy.

  • PDF

A Study on the Generation Expansion Planning System Under the Cost Based Pool (CBP 시장 체제하에서의 전력수급계획 수립 체계에 관한 연구)

  • Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.918-922
    • /
    • 2009
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning cannot use cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning process in the power markets. This system is composed of Regulator and GENCO's model. Regulator model used multi-criteria decision making rule. GENCO model is very complex problem. Thus, this system transacted the part by several scenario assuming GENCO model.

Agent-Based Modeling for Studying the Impact of Capacity Mechanisms on Generation Expansion in Liberalized Electricity Market

  • Dahlan, N.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1460-1470
    • /
    • 2015
  • This paper presents an approach to solve the long-term generation expansion planning problem of the restructured electricity industry using an agent-based environment. The proposed model simulates the generation investment decisions taken by a particular agent (i.e. a generating company) in a market environment taking into account its competitors’ strategic investment. The investment decision of a particular company is modeled taking into account that such company has imperfect foresight on the future system development hence electricity prices. The delay in the construction of new plants is also explicitly modeled, in order to compute accurately the yearly revenues of each agent. On top of a conventional energy market, several capacity incentive mechanisms including capacity payment and capacity market are simulated, so as to assess their impact on the investment promotion for generation expansion. Results provide insight on the investment cycles as well as dynamic system behavior of long-term generation expansion planning in a competitive electricity industry.

A Study on the Power Expansion Planning Model using Multi-criteria Decision Making Rule (다기준 의사결정 모형을 이용한 전력수급계획 모형에 관한 연구)

  • Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.462-466
    • /
    • 2009
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning can't use cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning model using multi-criteria decision rule. This model used multi objective function considering not only cost minimizing but also GENCO's intension. This paper compared proposed model with WASP model in order to verify the result of proposed model.

A study on the power expansion planning model using multi-criteria decision making rule (다기준 의사결정 모형을 이용한 전력수급계획 모형에 관한 연구)

  • Han, Seok-Man;Kang, Dong-Joo;Kim, Kwang-Mo;Hong, Hee-Jung;H. Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.77-79
    • /
    • 2008
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning not used cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning model using multi-criteria decision rule. This model used multi objective function considering not only cost minimizing but also GENCO's intension. This paper compared proposed model with WASP model in order to verify the result of proposed model.

  • PDF

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

CAPACITY EXPANSION MODELING OF WATER SUPPLY IN A PLANNING SUPPORT SYSTEM FOR URBAN GROWTH MANAGEMENT (도시성장관리를 위한 계획지원체계에서 상수도의 시설확장 모델링)

  • Hyong-Bok, Kim
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.9-21
    • /
    • 1995
  • A planning support system enhances our ability to use water capacity expansion as an urban growth management strategy. This paper reports the development of capacity expansion modeling of water supply as part of the continuing development of such a planning support system (PEGASUS: Planning Environment for Generation and Analysis of Spatial Urban Systems) to incorporate water supply, This system is designed from the understanding that land use and development drive the demand for infrastructure and infrastructure can have a significant influence on the ways in which land is developed and used. Capacity expansion Problems of water supply can be solved in two ways: 1) optimal control theory, and 2) mixed integer nonlinear programming (MINLP). Each method has its strengths and weaknesses. In this study the MINLP approach is used because of its strength of determining expansion sizing and timing simultaneously. A dynamic network optimization model and a water-distribution network analysis model can address the dynamic interdependence between water planning and land use planning. While the water-distribution network analysis model evaluates the performance of generated networks over time, the dynamic optimization model chooses alternatives to meet expanding water needs. In addition, the user and capacity expansion modeling-to-generate-alternatives (MGA) can generate alternatives. A cost benefit analysis module using a normalization technique helps in choosing the most economical among those alternatives. GIS provide a tool for estimating the volume of demanded water and showing results of the capacity expansion model.

  • PDF

A study on the generation expansion planning system under the power markets (경쟁시장 체제하에서의 전력수급계획 수립 체계에 관한 연구)

  • Han, Seok-Man;Kim, Kang-Won;Kim, Tae-Young;Lee, Jeong-In;H. Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.74-76
    • /
    • 2008
  • The power expansion planning is large and capital intensive capacity planning. In the past the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning not used cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning process in the power markets. This system is composed of Regulator and GENCO's model. Regulator model used multi-criteria decision making rule. GENCO model is very complex problem. Thus, this system transacted the part by several scenario assuming GENCO model.

  • PDF

Robust investment model for long range capacity expansion of chemical processing networks using two-stage algorithm

  • Bok, Jinkwang;Lee, Heeman;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1758-1761
    • /
    • 1997
  • The problem of long range capacity expansion planing for chemical processing network under uncertain demand forecast secnarios is addressed. This optimization problem involves capactiy expansion timing and sizing of each chemical processing unit to maximize the expected net present value considering the deviation of net present values and the excess capacity over a given time horizon. A multiperiod mixed integer nonlinear programming optimization model that is both solution and modle robust for any realization of demand scenarios is developed using the two-stage stochastic programming algorithm. Two example problems are considered to illustrate the effectiveness of the model.

  • PDF