• Title/Summary/Keyword: Capacity Expansion Model

Search Result 159, Processing Time 0.027 seconds

Development of Competency Evaluation Model for Public Private Partnership to Establish Strategies for Overseas Expansion (해외진출 전략 수립을 위한 민관합작투자사업의 역량평가모델 개발)

  • Park, Hwan Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.391-402
    • /
    • 2022
  • With the number of social overhead capital(SOC) projects that introduce private capital on the rise, overseas construction global companies today need to establish and advance their overseas order strategies. In this context, the purpose of this study is to develop the public private partnership(PPP) capacity evaluation model for developing countries and use it for domestic overseas construction companies to establish strategies for overseas expansion. The PPP competency evaluation model analyzes the importance of PPP competency evaluation items and infrastructure environment competency evaluation items through a review of previous studies and an interview survey with overseas construction experts. Through the above analysis results and expert surveys, problems that may occur when overseas construction companies enter the PPP market were derived, and improvement measures were proposed. Countries with a high probability of overseas construction companies entering the PPP market were determined to be those that have a mature PPP system, low risk in construction, and a good entry environment with a high infrastructure market size and growth rate. In addition, a lack of PPP investment experience, the absence of information on the infrastructure environment, and a shortage of PPP experts were identified as problems when entering the overseas construction PPP market. As an improvement measure, it was suggested to enter in cooperation with domestic and foreign companies. In addition, a plan was proposed to develop a curriculum to secure experts in areas such as PPP finance and contracts and to provide PPP information for each country. These findings are expected to contribute to overseas construction companies proposing strategies for entering the overseas construction market and using them for overseas expansion strategies and policy establishment.

Evaluation of the Impacts of Water Quality Management in Kyongan Stream Watershed using SWAT Model (SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.387-398
    • /
    • 2010
  • SWAT model would be applied to evaluate the pollutant removal capacity with various best management practices (BMPs) in Kyongan stream watershed which plays an important role in water quality conservation and improvement of Paldang reservoir. The methods for the representation of various BMPs scenarios with SWAT is developed and evaluated. Riparian buffer strip, agricultural conservation practices to reduce fertilizer, sediment, and nutrients occurring from farm field (Grassed swale, Contour farming/Parallel terrace, Field border, Farm retention pond, Grade stabilization structure), and washland such as wetland and pond to extend detention and improve water quality are represented in SWAT. And to represent the expansion of existing Waste Water Treatment Plants (WWTPs) in Soil and Water Assessment Tool (SWAT), reduction effect for point source pollutants was simulated. As the result of simulation, the removal rates of SS, TN, TP from scenarios of Kyongan stream watershed are the average annual SS yield by 5.2% to 69.2%, the average annual TN yield by 0.5% to 26.3%, and the average annual TP yield by 1.3% to 32.5%, respectively. This study has demonstrated that the SWAT is a very reliable and useful water quality and quantity assessment tool, and the BMPs representation in SWAT for watershed management is able to effectively simulate in Kyongan Stream watershed.

A Study on Application of LID Technology for Improvement of Drainage Capacity of Sewer Network in Urban Watershed (도시 유역의 우수관망 통수능 개선을 위한 LID 기술 적용 연구)

  • Baek, Jongseok;Kim, Baekjoong;Lee, Sangjin;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.617-625
    • /
    • 2017
  • Both domestic and overseas urban drainage systems have been actively researched to solve the problems of urban flash floods and the flood damage that is caused by local downpours. Recent urban planning has been designed to better manage the floods of decentralized rainfall-management systems, and the installation of green infrastructure and low-impact development (LID) facilities at national ministries has been recommended. In this study, we use the EPA SWMM model to construct a decentralized rainfall-management network for each small watershed, and we analyze the effect of the drainage-capacity improvement from the installation of the LID technologies in vulnerable areas that replaces the network-expansion process. In the design of the existing urban piping systems, it is common to increase the pipe size due to the increment of the impervious area, the steep terrain, and the sensitive entrance-ramp junction; however, the installation of green infrastructure and LID facilities will be sufficient for the construction of a safe urban drainage system. The applications of LID facilities and green infrastructure in urban areas can positively affect the recovery of the corresponding water cycles to a healthy standard, and it is expected that further research will occur in the future.

An Efficiency Evaluation of Korea's Electric Power Generation Industries using DEA model (DEA 모형을 활용한 국내 발전회사의 효율성 평가)

  • Koh, Seung-Churl;Sim, Gwang-Sic;Kim, Jae-Yun
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.61-77
    • /
    • 2008
  • Data Envelopment Analysis(DEA) is a promising methodology to evaluate the relative efficiency of the decision-making units. We have compared the efficiency of six electric power generation companies in Korea using DEA. The analysis results by input-oriented CCR and BCC models are summarized as follows: first, different results were acquired between using input factors as total capacity of generators and as sub-totals of generator capacity based on primary energy sources. It is the result influenced by input factors which are characterized by the proportion of fixed costs(generating facilities) and variable costs(generation costs for primary energy), Second, the efficiency will be increased if the input factors selected, according to primary energy sources discussed in this research, are used during long-term expansion of electric power capacity plans. It is expected that this approach can give a feedback for management of electric power generation companies.

Removal of haloacetonitrile by adsorption on thiol-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

  • Krueyai, Yaowalak;Punyapalakul, Patiparn;Wongrueng, Aunnop
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.342-346
    • /
    • 2015
  • Haloacetonitriles (HANs) are nitrogenous disinfection by-products (DBPs) that have been reported to have a higher toxicity than the other groups of DBPs. The adsorption process is mostly used to remove HANs in aqueous solutions. Functionalized composite materials tend to be effective adsorbents due to their hydrophobicity and specific adsorptive mechanism. In this study, the removal of dichloroacetonitrile (DCAN) from tap water by adsorption on thiol-functionalized mesoporous composites made from natural rubber (NR) and hexagonal mesoporous silica (HMS-SH) was investigated. Fourier-transform infrared spectroscopy (FTIR) results revealed that the thiol group of NR/HMS was covered with NR molecules. X-ray diffraction (XRD) analysis indicated an expansion of the hexagonal unit cell. Adsorption kinetic and isotherm models were used to determine the adsorption mechanisms and the experiments revealed that NR/HMS-SH had a higher DCAN adsorption capacity than powered activated carbon (PAC). NR/HMS-SH adsorption reached equilibrium after 12 hours and its adsorption kinetics fit well with a pseudo-second-order model. A linear model was found to fit well with the DCAN adsorption isotherm at a low concentration level.

The Effectiveness of Foreign Exchange Intervention: Empirical Evidence from Vietnam

  • DING, Xingong;WANG, Mengzhen
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.37-47
    • /
    • 2022
  • This study uses monthly data from January 2009 to December 2020 to examine the effectiveness of foreign currency intervention and its influence on monetary policy in Vietnam using a Hierarchical Bayesian VAR model. The findings suggest that foreign exchange intervention has little influence on the exchange rate level or exports, but it can significantly minimize exchange rate volatility. As a result, we can demonstrate that the claim that Vietnam is a currency manipulator is false. As well, the forecast error variance decomposition results reveal that interest rate differentials mainly determine the exchange rate level instead of foreign exchange intervention. Moreover, the findings suggest that foreign exchange intervention is not effectively sterilized in Vietnam. Inflation is caused by an increase in international reserves, which leads to an expansion of the money supply and a decrease in interest rates. Although the impact of foreign exchange intervention grows in tandem with the growth of international reserves, if the sterilizing capacity does not improve, rising foreign exchange intervention will instead result in inflation. Finally, we use a rolling window approach to examine the time-varying effect of foreign exchange intervention.

A Study on Determinants of Photovoltaic Energy Growth: Panel Data Regression with Autoregressive Disturbance (태양광 보급의 결정요인 연구: 자기상관 패널데이터 분석)

  • Kim, Kwangsu;Choi, Jinsoo;Yoon, Yongbeum;Park, Soojin
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.6-15
    • /
    • 2022
  • Climate change is among the most important issues facing mankind in modern society. However, global PV energy expansion has been driven mainly by OECD countries. We investigate the determinants of PV energy growth by panel data of selected OECD countries from 1991 to 2018. We investigate four categories of driving factors: socioeconomic, technological, country specific, and policy factors. The test results support that PV capacity growth is significantly driven by technology development and multidimensional environment policy factors. Socioeconomic factors such as CO2, GDP, and electricity price are statistically significant on the growth of PV energy, too. Whereas, country-specific solar potential factor is the least related. As most of the socioeconomic factors are exogenous, we need to focus more on PV technology development and policy measures.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

A Study on the Bearing Characteristics of No-grouted and End-compressed Micropile Adopting Wedge Horizontal Force (쐐기수평력을 도입한 무그라우팅 선단압축 마이크로파일의 지지력 특성에 관한 연구)

  • Hwang, Gyu-Cheol;Ahn, U-Jong;Lee, Jeong-Seob;Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2018
  • In this study, we developed a micropile equipped with ground fixing wedge device which is able to ensure the bearing capacity early before grouting by expanding the tip and exerting the tip surface friction while compressing and expanding the tip of the micropile during loading. The purpose of this study is to verify the applicability of the developed micropile to the ground with various kinds of strength and to compare its characteristics with those of the simple tip expansion micropile. A new test system including a model soil box which can measure the tip resistance and the tip skin friction separately was devised. The loading test was carried out according to the changes of the ground strength and the tip cross section using the devised test systems. As a result of the test, it was found that the developed micropile increased the tip skin friction due to the wedge horizontal force as the soil strength increased and could be applied more effectively to the ground with the strength not lower than the strength of the weathered rock. In addition, it was found that additional bearing capacity could be obtained due to the tip cross section expansion and the wedge horizontal force exertion even in the ground with the strength below the weathered rock strength.

A Study on a Reasonable Choice of Simulation Model for Rainfall-Runoff in the Prior Review System on Disaster Effect (사전재해영향성검토 시 합리적인 홍수유출 모의모형 선정에 관한 연구)

  • Lee, Jung-Min;Yun, Jeong-Ran;Kim, Young-Jin;Jin, Kyu-Nam;Han, Hyung-Geun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 2010
  • Urban development is a cause of expansion of impervious area. A permanent storage is operated as a method of reducing runoff of watershed. The purpose of study is to propose reasonable choice of simulation model for rainfall-runoff in the prior review system on disaster effect. First, we indicated problem about concentration time choice in the flood simulation. To test the adequacy of a rainfall-runoff simulation model, We analyzed characteristics of rainfall-runoff about urban and natural watersheds. A simulation model was calibrated with the storm of july 7 to July 9 in 2009. From the result, we proposed that SWMM and kinematic wave method as the flood simulation models for urban and natural watersheds. A simulation model and design method of a permanent storage for flood that is proposed in this study will be useful for practical design of flood simulation. The hydrologic analysis method of the study can be used for capacity evaluation of permanent storage plan.