• Title/Summary/Keyword: Capacity Design

Search Result 5,622, Processing Time 0.031 seconds

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Estimation of Bearing Capacity of SIP Pile Installed by Improved Criteria (개선된 기준으로 시공된 SIP 말뚝의 지지력 평가에 관한 연구)

  • Park, Jong-Bae;Kim, Jung-Soo;Lim, Hae-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.5-15
    • /
    • 2004
  • SIP has been widely used as a low noise and vibration piling method in Korea. But the quality control of SIP was not properly settled down and field workers did not fully understand the principle of SIP method. So not a less troubles were raised at construction site and bearing capacity was not fully mobilized. To settle these problems, Korea National Housing Corporation amended the construction and load test criteria of SIP in 2002. After load tests on the SIPs installed in field according to the new criteria, we found that the bearing capacity in field vs the design load ratio increased and bearing characteristics was enhanced than that installed by the former criteria. To consider the enhanced bearing characteristics in the pile design and determine the adequate design criteria, this paper analyzed the accuracy of design criterion which were commonly used in Korea comparing with the load test results. Analysis result shows that Meyerhof criteria(1976) properly simulates the bearing capacity of SIP installed by the new construction and load test criteria.

  • PDF

A Basic Study on the Demand Analysis of Waiting Anchorage using Anchorage Capacity Index (정박지 용량지수를 활용한 대기정박지 수요 분석에 대한 기초 연구)

  • Kwon, Seung-Cheol;Yu, Yong-Ung;Park, Jun-Mo;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.519-526
    • /
    • 2019
  • This study proposes a methodology for estimating the appropriate capacity of anchorage for ports requiring the establishment of waiting anchorage and then applying the methodology to the ports in Jinhae Bay to compare it with the anchorage capacity of major ports in Korea. To estimate the appropriate anchorage capacity, the "Anchorage Capacity Index" was used, which was calculated from the "Total Gross Tonnage" and "Simultaneous Anchoring Capacity". The calculations were made according to the anchorage capacity index of 0.89 of the target harbors. The adequate anchorage capacity index for the new waiting anchorage was analyzed at a level of 6.0. If the concept of anchorage capacity index suggested in this study is reflected as a new design criteria of waiting anchorage, it will be helpful for the safety of berth, safety of anchorage and effective operation of harbor.

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

An Experimental Study on Behavior for the Piled Raft (Piled Raft 거동특성에 관한 실험적 연구)

  • Kwon, Oh-Kyun;Lee, Seung-Hyun;Oh, Se-Boong;Lim, Jong-Seok;Lee, Whoal
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.77-89
    • /
    • 2002
  • To analyze a bearing capacity for pile groups, a number of model tests have been done and theoretical methods studied. In the case of design of group pile bearing capacity is calculated with only pile capacity. But uncertainty of bearing capacity and behavior of foundation cap(raft) leads to conservative design ignoring bearing effects of foundation cap. In the case of considering bearing capacity of foundation cap, the simple sum of bearing capacity of foundation cap and pile groups cannot be the bearing capacity of total foundation system. Since cap-pile-soil interaction affects the behavior of pile groups. Thus, understanding cap-pile-soil interaction is very important in optimal design. In this paper, the piled raft behavior is studied through model tests of 2$\times$2, 2$\times$3, 3$\times$3 pile group. Changes of behavior of pile group foundation by touching effects of foundation cap with soil are studied. Also changes of spacing between piles. Foundation cap is made of rigid steel plate and piles are made steel pipes. From this model tests, the changes of behavior changes of pile groups by touching effects of foundation cap with soil are studied.

  • PDF

A study on energy efficiency improvement of waste-water treatment system by freeze concentration method (동결농축법을 이용한 폐수처리시스템의 에너지 효율 향상에 관한 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.467-476
    • /
    • 2013
  • Freeze concentration method has advantages of high thermodynamic efficiency, low energy consumption and purified water re-use. In this study, freeze concentration waste-water system which was designed as the small and medium sized capacity was analyzed about the rate of electric power consumption and the daily treatment capacity to suggest the direction of system development. At first, power consumption and operation time of the system with fresh water precooler or without it was calculated by computer modeling and analysis. Subsequently, the change of design treatment capacity was applied to the system with fresh water cooler. As a result, the rate of electric power consumption was higher as 0.6 Wh/kg but daily treatment capacity increased in quantity as 19 % in the system with fresh water precooler. As design treatment capacity increased, the rate of electric power consumption was lower and daily treatment capacity was larger in quantity.

Design of Unbend Braces Using Capacity Spectrum Method (능력스펙트럼을 이용한 가새형 소성 감쇠기의 설계)

  • 최현훈;김유정;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.260-267
    • /
    • 2001
  • In this study straightforward design procedure for unbond brace hysteretic dampers is developed. The required amount of equivalent damping to satisfy given performance acceptance criteria is obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbend braces is determined from the required equivalent damping. Parametric study is performed for the design variables such as natural period, yield strength, the stiffness after the first yield, yield stress of the unbond brace.

  • PDF

The design of the traction power supply for the test line of Light Rail Vehicle (경전철 시험선용 전력공급시스템 설계)

  • 김국진;백병산;전용주;정상기;김남규
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.