• Title/Summary/Keyword: Capacitor-run SPIM

Search Result 4, Processing Time 0.017 seconds

Speed Control Characteristics of Capacitor-Run Single Phase Induction Motor Using TRIAC (TRIAC을 이용한 커패시터 운전형 단상 유도전동기의 속도제어 특성)

  • Lee, Seung-Yong;Yoon, Duck-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1283-1288
    • /
    • 2012
  • This paper presents speed control characteristics of capacitor-run SPIM(Single Phase Induction Motor) using TRIAC for comparing and analyzing four kinds of voltage control methods such as supply voltage control, main winding voltage control, auxiliary winding voltage control and auxiliary winding voltage control without starting capacitor. The computer simulations were performed using MATLAB Simulink to show control characteristics of four voltage control methods. And their control characteristics were conformed by experiments for capacitor-run 90W SPIM as a sample motor. The results of simulations and experiments show that supply voltage control method has fast dynamic response characteristics and main winding voltage control method has higher power efficiency and can be implemented at lower system cost.

Novel Soft Starting Algorithm of Single Phase Induction Motors by Using PWM Inverter

  • Kim, Hae-Jin;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1720-1728
    • /
    • 2018
  • This paper proposes a novel soft starting algorithm by using PWM inverter technique to control an amplitude of the motor starting current at a single-phase induction motor (SPIM). Traditional SPIM starting methods such as a Split-Phase, Capacitor-Start, Permanent-Split Capacitor (PSC), Capacitor-Start Capacitor-Run (CSCR), basically cannot control the magnitude of starting current due to the fixed system structures. Therefore, in this paper, a soft starting algorithm based on a proportional resonant (PR) control with a variable and constant frequency is proposed to reduce the inrush current and starting up time. In addition, a transition algorithm for operation modes is devised to generate a constant voltage and constant frequency (CVCF). The validity and effectiveness of the proposed soft starting method and transition algorithm are verified through experimental results.

A Study on the Torque Performance to Capacitance of a Capacitor-run type Single Phase Induction Motor

  • Kim Cherl-Jin;Choi Chul-Yong;Baek Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.20-26
    • /
    • 2005
  • Various kinds of practical machines using the single phase induction motor (SPIM) are utilized to control both speed and torque. In particular, the capacitor-run type SPIM has the characteristic that allows the motor torque to be altered by auxiliary capacitance variation. In this study, we manifest an equivalent model having a more simplified configuration, and clarify the relationship between torque and capacitance. Also, we design an experimental controller that is able to perform speed control with ease by the phase angle control of the AC input voltage. Validity of this study is confirmed through the simulation and experimental results obtained.

Magnetic vibration analysis for FEM simulation and experiment of single phase induction motor (단상유도전동기의 FEM시뮬레이션과 실험에 의한 자기적 진동원 분석)

  • Kim, Cherl-Jin;Choi, Chul-Yong;Kim, Hyun-Il;Choi, Geun-Soo;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.945-947
    • /
    • 2003
  • Various kinds of practical machines using single phase induction motor(SPIM) are necessary to control speed and torque. In particular, capacitor-run type SPIM has constitutional characteristics, the motor torque is changed by auxiliary capacitance variation. In this study, we manifest equivalent model having more simplicity, and study the relation between torque and capacitance value of SPIM. And analyze Magnetic vibration for FEM(Finite Element Method) simulation. Also, We design the experimental controller which is able to speed control accurately by phase angle control of AC input voltage. Through the simulation and experimental results, we confirmed validity of this study.

  • PDF