• Title/Summary/Keyword: Capacitor Structure

Search Result 530, Processing Time 0.031 seconds

Design and Fabrication of Low Loss, High Power SP6T Switch Chips for Quad-Band Applications Using pHEMT Process (pHEMT 공정을 이용한 저손실, 고전력 4중 대역용 SP6T 스위치 칩의 설계 및 제작)

  • Kwon, Tae-Min;Park, Yong-Min;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.584-597
    • /
    • 2011
  • In this paper, low-loss and high-power RF SP6T switch chips are designed, fabricated and measured for GSM/EGSM/DCS/PCS applications using WIN Semiconductors 0.5 ${\mu}m$ pHEMT process. We utilized a combined configuration of series and series-shunt structures for optimized switch performance, and a common transistor structure on a receiver path for reducing chip area. The gate width and the number of stacked transistors are determined using ON/OFF input power level of the transceiver system. To improve the switch performance, feed-forward capacitors, shunt capacitors and parasitic FET inductance elimination due to resonance are actively used. The fabricated chip size is $1.2{\times}1.5\;mm^2$. S-parameter measurement shows an insertion loss of 0.5~1.2 dB and isolation of 28~36 dB. The fabricated SP6T switch chips can handle 4 W input power and suppress second and third harmonics by more than 75 dBc.

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

The Design of 10-bit 200MS/s CMOS Parallel Pipeline A/D Converter (10-비트 200MS/s CMOS 병렬 파이프라인 아날로그/디지털 변환기의 설계)

  • Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper introduces the design or parallel Pipeline high-speed analog-to-digital converter(ADC) for the high-resolution video applications which require very precise sampling. The overall architecture of the ADC consists of 4-channel parallel time-interleaved 10-bit pipeline ADC structure a]lowing 200MSample/s sampling speed which corresponds to 4-times improvement in sampling speed per channel. Key building blocks are composed of the front-end sample-and-hold amplifier(SHA), the dynamic comparator and the 2-stage full differential operational amplifier. The 1-bit DAC, comparator and gain-2 amplifier are used internally in each stage and they were integrated into single switched capacitor architecture allowing high speed operation as well as low power consumption. In this work, the gain of operational amplifier was enhanced significantly using negative resistance element. In the ADC, a delay line Is designed for each stage using D-flip flops to align the bit signals and minimize the timing error in the conversion. The converter has the power dissipation of 280㎽ at 3.3V power supply. Measured performance includes DNL and INL of +0.7/-0.6LSB, +0.9/-0.3LSB.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

Evaluation of $SrRuO_3$ Buffer Layer for $Pb(Zr,Ti)O_3$ Ferroelectric Capacitor ($Pb(Zr,Ti)O_3$ 강유전체 커패시터에 적용하기 위한 $SrRuO_3$ 버퍼 층의 특성 평가)

  • Kweon, Soon-Yong;Choi, Ji-Hye;Son, Young-Jin;Hong, Suk-Kyoung;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.280-280
    • /
    • 2007
  • $Pb(Zr,Ti)O_3$ (PZT) 강유전체 박막은 높은 잔류 분극 (remanent polarization) 특성 때문에 현재 강유전체 메모리 (FeRAM) 소자에 적용하기 위하여 가장 활발히 연구되고 있다. 그런데 PZT 물질은 피로 (fatigue) 및 임프린트 (imprint) 등의 장시간 신뢰성 (long-term reliability) 특성이 취약한 단점을 가지고 있다. 이러한 신뢰성 문제를 해결할 수 있는 효과적인 방법 중의 하나는 $IrO_2$, $SrRuO_3$(SRO) 등의 산화물 전극을 사용하는 것이다. 많은 산화물 전극 중에서 SRO는 PZT와 비슷한 pseudo-perovskite 결정구조를 갖고 격자 상수도 비슷하여, PZT 커패시터의 강유전 특성 및 신뢰성을 향상시키는데 매우 효과적인 것으로 알려져 있다. 따라서 본 연구는 PZT 커패시터에 적용하기 위하여 SRO 박막을 증착하고 이의 전기적 특성 및 미세구조를 분석하고자 하였다. 또 실제로 SRO 박막을 상부전극과 PZT 사이의 버퍼 층 (buffer layer)으로 적용한 경우의 커패시터 특성도 평가하였다. 먼저 다결정 SRO 박막을 $SiO_2$/Si 기판 위에 DC 마그네트론 스퍼터링 법 (DC magnetron sputtering method)으로 증착하였다. 그 다음 이러한 SRO 박막의 미세구조, 결정성 및 전기적 특성이 증착 조건들의 변화에 따라서 어떤 경향성을 보이는지를 평가하였다. 기판 온도는 $350\;{\sim}\;650^{\circ}C$ 범위에서 변화시켰고, 증착 파워는 500 ~ 800 W 범위에서 변화시켰다. 또 Ar+$O_2$ 혼합 가스에서 산소의 혼합 비율을 20 ~ 50% 범위에서 변화시켰다. 이러한 실험 결과 SRO 박막의 전기적 특성 및 미세 구조는 기판의 증착 온도에 따라서 가장 민감하게 변함을 관찰할 수 있었다. 다른 증착 조건과 무관하게 $450^{\circ}C$ 이상의 온도에서 증착된 SRO 박막은 모두 주상정 구조 (columnar structure)를 형성하며 (110) 방향성을 강하게 나타내었다. 가장 낮은 전기 저항은 $550^{\circ}C$ 증착 온도에서 얻을 수 있었는데, 그 값은 약 $440\;{\mu}{\Omega}{\cdot}cm$ 이었다. SRO 버퍼 충을 적용하여 제작한 PZT 커패시터의 잔류 분극 (Pr) 값은 약 $30\;{\mu}C/cm^2$ 정도로 매우 높은 값을 나타내었고, 피로 손실 (fatigue loss)도 $1{\times}10^{11}$ 스위칭 사이클 후에 약 11% 정도로 매우 양호한 값을 나타내었다.

  • PDF

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

The Study on Control Algorithm of Elevator EDLC Emergency Power Converter (승강기 EDLC 비상전원 전력변환장치 제어 알고리즘 연구)

  • Lee, Sang-min;Kim, IL-Song;Kim, Nam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.709-718
    • /
    • 2017
  • The installation of the elevator ARD(Automatic Rescue Device) system has been forced into law in these days in order to safely rescue passengers during power failure. The configuration of the ARD system consists of energy storage device, power converter and control systems. The EDLC(Electric Double Layer Capacitor) are used as energy storage device for rapid charge/discharge purposes. The power conditioning system (PCS) consists of bi-directional converter, 3-phase converter and control system. The dead-beat control system is adopted for most systems however it requires complex mathematical calculations, the high performance microprocessors are mandatory and thus it can be a cause of high manufacturing cost. In this paper the new control method for average current mode control is presented for simple structure. The control algorithm is applied to the single phase system and then expands to three phase system to meet the sysem requirements. The mathematical modeling using average modeling method is presented and analysed by PSIM computer simulation to verifie the validity of the proposed control methods.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

Bottom electrode optimization for the applications of ferroelectric memory device (강유전체 기억소자 응용을 위한 하부전극 최적화 연구)

  • Jung, S.M.;Choi, Y.S.;Lim, D.G.;Park, Y.;Song, J.T.;Yi, J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.599-604
    • /
    • 1998
  • We have investigated Pt and $RuO_2$ as a bottom electrode for ferroelectric capacitor applications. The bottom electrodes were prepared by using an RF magnetron sputtering method. Some of the investigated parameters were a substrate temperature, gas flow rate, RF power for the film growth, and post annealing effect. The substrate temperature strongly influenced the surface morphology and resistivity of the bottom electrodes as well as the film crystallographic structure. XRD results on Pt films showed a mixed phase of (111) and (200) peak for the substrate temperature ranged from RT to $200^{\circ}C$, and a preferred (111) orientation for $300^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of $300^{\circ}C$ and RF power 80W for the Pt bottom electrode growth. With the variation of an oxygen partial pressure from 0 to 50%, we learned that only Ru metal was grown with 0~5% of $O_2$ gas, mixed phase of Ru and $RuO_2$ for $O_ 2$ partial pressure between 10~40%, and a pure $RuO_2$ phase with $O_2$ partial pressure of 50%. This result indicates that a double layer of $RuO_2/Ru$ can be grown in a process with the modulation of gas flow rate. Double layer structure is expected to reduce the fatigue problem while keeping a low electrical resistivity. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Pt and $RuO_2$ was decreased linearly. This paper presents the optimized process conditions of the bottom electrodes for memory device applications.

  • PDF

Preparation of $SrTiO_3$ Thin Film by RF Magnetron Sputtering and Its Dielectric Properties (RF 마그네트론 스퍼터링법에 의한 $SrTiO_3$박막제조와 유전특성)

  • Kim, Byeong-Gu;Son, Bong-Gyun;Choe, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.754-762
    • /
    • 1995
  • Strontium titanate(SrTiO$_3$) thin film was prepared on Si substrates by RF magnetron sputtering for a high capacitance density required for the next generation of LSTs. The optimum deposition conditions for SrTiO$_3$thin film were investigated by controlling the deposition parameters. The crystallinity of films and the interface reactions between SrTO$_3$film and Si substrate were characterized by XRD and AES respectively. High quality films were obtained by using the mixed gas of Ar and $O_2$for sputtering. The films were deposited at various bias voltages to obtain the optimum conditions for a high quality file. The best crystallinity was obtained at film thickness of 300nm with the sputtering gas of Ar+20% $O_2$and the bias voltage of 100V. The barrier layer of Pt(100nm)/Ti(50nm) was very effective in avoiding the formation of SiO$_2$layer at the interface between SrTiO$_3$film and Si substrate. The capacitor with Au/SrTiO$_3$/Pt/Ti/SiO$_2$/Si structure was prepared to measure the electric and the dielectric properties. The highest capacitance and the lowest leakage current density were obtained by annealing at $600^{\circ}C$ for 2hrs. The typical specific capacitance was 6.4fF/$\textrm{cm}^2$, the relative dielectric constant was 217, and the leakage current density was about 2.0$\times$10$^{-8}$ A/$\textrm{cm}^2$ at the SrTiO$_3$film with the thickness of 300nm.

  • PDF