• Title/Summary/Keyword: Capacitor Current

Search Result 1,356, Processing Time 0.024 seconds

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Electrical Conduction Mechanism of (Ba, Sr) $TiO_3$ Thin Film Capacitor in Low Electric Field Region (고유전 (Ba, Sr) $TiO_3$ 박막 커패시터의 저전계 영역에서의 전기전도기구)

  • Jang, Hoon;Jang, Byung-Tak;Cha, Seon-Yong;Lee, Hee-Chul
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The electrical conduction mechanism of high dielectric $(Ba,Sr)TiO_3$ (BST) thin film capacitor, which is the promising cell capacitor for high density DRAM, was investigated in low field region (<0.2MV/cm). It is known that the current in the low field region consists of dielectric relaxation current and leakage current. The current-time (I-t) measurement technique under the constant voltage was used for extracting successfully each current component. The conduction mechanism of the BST capacitor was deduced from the dependency of the current on the measurement temperature, strength of electric field, the polarity of applied electric field and post annealing process. From these results, it was suggested that the dielectric relaxation current and the leakage current are originated from the redistribution of internally trapped electron by hopping process and Pool-Frenkel conduction mechanism, respectively. It was also concluded that traps causing these two current components are due to oxygen vacancies within the BST film.

  • PDF

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Analysis in Capacitor of Microaccelerometer Sensor Using Tunnelling Current Effect (턴널링 전류효과를 이용한 마이크로가속도 센서의 축전기부 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.57-62
    • /
    • 1999
  • The microaccelerometer using a tunnelling current effect concept has the potential of high performance, although it requires slightly complex signal-processing circuit for servo-system. The paddle of micro accelerometer is pulled to have the gap width of about 2nm which almost allows the flow tunnelling current. This paper demonstrates at capacitor of microaccelerometer the use of the coupled thermo-electric analysis for voltage, current, heat flux and Joule heating then tunnelling current flows. Two electrodes are applied to the microaccelerometer producing a unform difference of temperature gradient and electric potential between the paddle and the substrate.

  • PDF

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

I-V Characteristics of SrTiO$_3$ Ceramics Capacitor Thin Films. (SrTi0$_3$세라믹 캐패시터 박막의 I-V 특성)

  • 이우선;김남오;정용호;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.79-81
    • /
    • 1996
  • We fabricated SrTiO$_3$thin film capacitor on the Ag/Si-wafer by RF sputtering deposition. And I-V characteristics and structual analysis of the thin film capacitor are investigated. We found that the leakage current of the films during deposition is strongly denpent on the ambient gas and substrate temperature. Because of increase of activation energy, leakage current increased at high temperature and resistivity of the films was decreased. According to the increase of oxygen gas flow rate, the conductivity of thin film capacitor was increased and leakage current was decreased.

  • PDF

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

Study on the Variation of Reactive Power When Applying the Passive Filter (수동형 필터 적용시 무효전력의 변화에 관한 연구)

  • Kim, Ji-Myeong;Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1626-1631
    • /
    • 2016
  • Generally, the low-voltage customer has been used with a linear load and nonlinear load in the 3-phase 4-wire distribution system. Linear load has usually configured the resistance and inductance, current phase is slower than the voltage phase, so power factor is low. It is required for the power factor correction device prior to the phase of the current than the voltage. The capacitor is connected in parallel to the load in order to ensure a low power factor. Power converter such as an inverter is a typical non-linear load. Non-linear load generates harmonic currents in the energy conversion process. Many electrical equipment may be adversely affected by the harmonic current. There, passive or active filter have been used to reduce these harmonics current. Passive filter consisting of inductor and capacitor generates a reactive power. According to the combination of filter inductor and capacitor, reactive power can be adjusted. In this paper, we analyzed how the combination of inductor and capacitor affects the overall power factor by simulation and measurement.