• Title/Summary/Keyword: Capacitive touch

Search Result 56, Processing Time 0.024 seconds

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

EMI Noise Suppression Effectiveness of Magnetic Composite Sheet Suitable for EL Touch Pannel

  • Byun, In-Ho;Woo, Seo-Hwi;Lee, Seong-Eui;Lee, Kyung-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.187-187
    • /
    • 2010
  • 현대의 전기전자 기술의 발전속도가 급격히 빨라짐에 따라서 디지털 전자기기는 많은 데이터와 빠른 전송속도가 요구되어지고 있으며 이로 인해 예상치 못한 고주파 노이즈 신호의 문제가 심각해지고 있다. 최근 디지털 전자기기 중 디스플레이 표시장치에서 구동전압 인가 시 발생하는 근역장 방사노이즈가 문제가 되고 있고, 정전용량방식 (Capacitive Overlay)Touch Pannel에서 터치 시 오작동을 일으키는 EL 면광원의 EMI(Electro-Magnetic Interference, 전자방해)가 본 연구에서 해결하고자 하는 문제이다. EL 면광원의 구동전압이 증가함에 따라서 Touch Panel에 인가되는 근역장 방사노이즈의 세기를 측정하였고 근역장 방사노이즈를 감쇄할 수 있는 Flexible한 자성복합시트에 대해서 연구하였다. EL Display Pannel에 Flexible한 자성 복합시트를 채용하여 Flexible Display 장비의 근역장 방사노이즈 감쇄에 효과가 있음을 확인하였다.

  • PDF

Circuit Modeling and Analysis of Touch Screen Panel (터치스크린 패널의 회로 모델링 및 분석)

  • Byun, Kisik;Min, Byung-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • A simple RC circuit model of large-scale touch screen panels is developed and the frequency range of the RC model is analyzed. 2D EM simulation results of a single touch cell are cascaded for a 23 inch touch panel using a circuit simulator, and the shortest and longest channels of the full panel are modeled with a 5-element RC circuit. The 5-element RC circuit can model the touch screen panel upto 130 kHz with the channel phase error of $10^{\circ}$. 7-element RC circuit model is also proposed and the frequency range for the channel phase error of $10^{\circ}$ is extended to 200 kHz.

An alternative method for smartphone input using AR markers

  • Kang, Yuna;Han, Soonhung
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.153-160
    • /
    • 2014
  • As smartphones came into wide use recently, it has become increasingly popular not only among young people, but among middle-aged people as well. Most smartphones adopt capacitive full touch screen, so touch commands are made by fingers unlike the PDAs in the past that use touch pens. In this case, a significant portion of the smartphone's screen is blocked by the finger so it is impossible to see the screens around the finger touching the screen; this causes difficulties in making precise inputs. To solve this problem, this research proposes a method of using simple AR markers to improve the interface of smartphones. A marker is placed in front of the smartphone camera. Then, the camera image of the marker is analyzed to determine the position of the marker as the position of the mouse cursor. This method can enable click, double-click, drag-and-drop used in PCs as well as touch, slide, long-touch-input in smartphones. Through this research, smartphone inputs can be made more precise and simple, and show the possibility of the application of a new concept of smartphone interface.

Improvement of Smartphone Interface Using AR Marker (AR 마커를 이용한 스마트폰 인터페이스의 개선)

  • Kang, Yun-A;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.361-369
    • /
    • 2011
  • As smartphones came into wide use recently, it has become increasingly popular not only among young people, but middle-aged people as well. Most smartphones use capacitive full touch screen, so touch commands are made by fingers unlike the PDAs in the past that use touch pens. In this case, a significant portion of the smartphone's screen is blocked by the finger so it is impossible to see the screens around the finger touching the screen, and difficulty occurs in precise control used for small buttons such as qwerty keyboard. To solve this problem, this research proposes a method of using simple AR markers to improve the interface of smartphones. Sticker-form marker is attached to fingernails and placed in front of the smartphone camera Then, the camera image of the marker is analyzed to determine the orientation of the marker to perceive as onRelease() or onPress() of the mouse depending on the marker's angle of rotation, and use its position as the position of the mouse cursor. This method can enable click, double-click, drag-and-drop used in PCs as well as touch, slide, long-touch-input in smartphones. Through this research, smartphone inputs can be made more precise and simple, and show the possibility of the application of a new concept of smartphone interface.

Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (은나노와이어·전도성고분자 하이브리드 필름을 이용한 유연 투명 정전용량형 압력 센서의 특성)

  • Ahn, Young Seok;Kim, Wonhyo;Oh, Haekwan;Park, Kwangbum;Kim, Kunnyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • In this paper, we developed a flexible transparent capacitive pressure sensor which can recognize X and Y coordinates and the size of force simultaneously by sensing a change in electrical capacitance. The flexible transparent capacitive pressure sensor was composed of 3 layers which were top electrode, pressure sensing layer, and bottom electrode. Silver nanowire(Ag NW)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid film was used for top and bottom flexible transparent electrode. The fabricated capacitive pressure sensor had a total size of 5 inch, and was composed of 11 driving line and 19 sensing line channels. The electrical, optical properties of the Ag NW/PEDOT:PSS and capacitive pressure sensor were investigated respectively. The mechanical flexibility was also investigated by bending tests. Ag NW/PEDOT:PSS exhibited the sheet resistance of $44.1{\Omega}/square$, transmittance of 91.1%, and haze of 1.35%. Notably, the Ag NW/PEDOT:PSS hybrid electrode had a constant resistance change within a bending radius of 3 mm. The bending fatigue tests showed that the Ag NW/PEDOT:PSS could withstand 200,000 bending cycles which indicated the superior flexibility and durability of the hybrid electrode. The flexible transparent capacitive pressure sensor showed the transmittance of 84.1%, and haze of 3.56%. When the capacitive pressure sensor was pressed with the multiple 2 mm-diameter tips, it can well detect the force depending on the applied pressure. This indicated that the capacitive pressure sensor is a promising scheme for next generation flexible transparent touch screens which can provide multi-tasking capabilities through simultaneous multi-touch and multi-force sensing.

Touch Recognition based on SIFT Algorithm (SIFT 알고리즘 기반 터치인식)

  • Jung, Sung Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.69-75
    • /
    • 2013
  • This paper introduces a touch recognition method for touch screen systems based on the SIFT(Scale Invariant Feature Transform) algorithm for stable touch recognition under strong noises. This method provides strong robustness against the noises and makes it possible to effectively extract the various size of touches due to the SIFT algorithm. In order to verify our algorithm we simulate it on the Matlab with the channel data obtained from a real touch screen. It was found from the simulations that our method could stably recognize the touches without regard to the size and direction of the touches. But, our algorithm implemented on a real touch screen system does not support the realtime feature because the DoG(Difference of Gaussian) of the SIFT algorithm needs too many computations. We solved the problem using the DoM(Difference of Mean) which is a fast approximation method of DoG.

Development of Smartphone Control Jacket Using Textile Touch Sensor (텍스타일 터치센서를 활용한 스마트폰 제어 기능 재킷 개발)

  • Park, Jinhee;Kim, Ji-seon;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.5
    • /
    • pp.140-157
    • /
    • 2020
  • The purpose of this study is to develop three functions for smartphones and PCs using a textile touch sensor in an everyday sports jacket and to present their usefulness; to this end, we have developed a mutual capacitive textile touch sensor and corresponding structure, and we have implemented three functions into a textile touch sensor jacket, of which we also conducted a usability evaluation. The jacket has a sensor on the wrist of the left sleeve and a device on the left arm. The sensor system can be divided into three main categories: a sensor acting as a switch, a circuit connecting the sensor and the device, and the device that acts as power control and system on/off. The functions are implemented in the texture touch sensor jacket in three modes: cell phone mode, music mode, and PPT presentation mode. We conducted an evaluation of each function in each mode, which indicated that all functions performed well without errors and that the switch had excellent operation for the number and intensity of touch. In terms of usability in a humid environment, the performance of touch functions was found to be equally implemented. In the temperature environment, neither high nor low temperatures caused issues with the functions. A wearing satisfaction assessment evaluated psychological satisfaction, clothing convenience, device convenience, device usability, and device effectiveness. This research jacket is thought to be desirable for the relatively bendable, flexible, and intimate sensor used on the clothing, and the circuit made of conductive fabric tape.

A Study on Touchless Panel based Interactive Contents Service using IrDA Matrix

  • Lee, Minwoo;Lee, Dongwoo;Kim, Daehyeon;Ann, Myungsuk;Lee, Junghoon;Lee, Seungyoun;Cho, Juphil;Shin, Jaekwon;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • Touch panel is mainly applied to pressure type touch panel but it occur a low recognition rate and error during long-term use. So, it is partly applied to capacitive touch panel to compensate for these problems but it also can occur a same problems via pollutions. Touch technology has developed a various method but it is not used because of high costs and difficult installation process. So, in this paper, we proposed an input method of touchless panel using IrDA matrix. This method is conducted using an IrDA Matrix composed of depth sensor. It is possible to offer a various contents for multi user. The proposed technology need a development of a high sensitivity sensing method and high-speed processing method of position information for Seamless operation control. And, it is required high-precision drive technology. Also, we proposed a Seamless user recognition for interactive contents service through a touchless panel using IrDA matrix.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.