• Title/Summary/Keyword: Capacitive

Search Result 1,058, Processing Time 0.028 seconds

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.

High Efficiency Alternating Current Driver for Capacitive Loads Using a Current-Balance Transformer

  • Baek, Jong-Bok;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper proposes a new alternating current driving method for highly capacitive loads such as plasma display panels or piezoelectric actuators, etc. In the proposed scheme, a current balance transformer, which has two windings with the same turn-ratio, provides not only a resonance inductance for energy recovery but also a current balance among all of the switching devices of the driver for current stress reduction. The smaller conduction loss than conventional circuits occurs due to the dual conduction paths which are parallel each other in the current balance transformer. Also, the leakage inductances of the transformer are utilized as resonant inductors for energy recovery by the series resonance to the capacitive load. Furthermore, the resonance contributes to the small switching losses of the switching devices by soft-switching operation. To confirm the validity of the proposed circuit, prototype hardware with a 12-inch mercury-free flat fluorescent lamp is implemented. The experimental results are compared with a conventional energy-recovery circuit from the perspective of luminance performances.

Capacitive Equivalent Circuit Modeling for Coplanar Waveguide Discontinuities (코플래너 웨이브가이드 불연속에 대한 용량성 등가회로 모델링)

  • 박기동;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.486-487
    • /
    • 1997
  • This paper presents the pure capacitive lumped element equivalent circuits for several coplanar waveguide(CPW) discontinuities such as an open-end, an open-end with connected ground planes, a gap and an open-end CPW stub and gives their capacitive element values as a function of physical dimensions of the discontinuity and the frequency for a specific substrate. The capacitive element values are determined from the scattering parameters which are obtained using the finite-difference time-domain(FDTD) method. For an open-end, an open-end with connected ground planes and a gap, the numerical results of the FDTD are compared with the quasi-static results which are calculated using the three- dimensional finite difference method(3D-FDM).

  • PDF

자체 증폭에 의하여 저 전압 구동이 가능한 이중 게이트 구조의 charge trap flash (CTF) 타입의 메모리

  • Jang, Gi-Hyeon;Jang, Hyeon-Jun;Park, Jin-Gwon;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.185-185
    • /
    • 2013
  • 반도체 트랜지스터의 집적화 기술이 발달하고 소자가 나노미터 크기로 집적화 됨에 따라 문턱 전압의 변동, 높은 누설 전류, 문턱전압 이하에서의 기울기의 열화와 같은 단 채널 효과가 문제되고 있다. 이러한 문제점들은 비 휘발성 플래시 메모리에서 메모리 윈도우의 감소에 따른 retention 특성을 저하시킨다. 이중 게이트 구조의 metal-oxide-semiconductor field-effect-transistors (MOSFETs)은 이러한 단 채널 효과 중에서도 특히 문턱 전압의 변동을 억제하기 위해 제안되었다. 이중 게이트 MOSFETs는 상부 게이트와 하부 게이트 사이의 capacitive coupling을 이용하여 문턱전압의 변동의 제어가 용이하다는 장점을 가진다.기존의 플래시 메모리는 쓰기 및 지우기 (P/E) 동작, 그리고 읽기 동작이 채널 상부의 컨트롤 게이트에 의하여 이루어지며, 메모리 윈도우 및 신뢰성은 플로팅 게이트의 전하량의 변화에 크게 의존한다. 이에 따라 메모리 윈도우의 크기가 결정되고, 높은 P/E 전압이 요구되며, 터널링 산화막에 인가되는 높은 전계에 의하여 retention에서의 메모리 윈도우의 감소와 산화막의 물리적 손상을 초래하기 때문에 신뢰성 및 수명을 열화시키는 원인이 된다. 따라서 본 연구에서는, 상부 게이트 산화막과 하부 게이트 산화막 사이의 capacitive coupling 효과에 의하여 하부 게이트로 읽기 동작을 수행하면 메모리 윈도우를 크게 증폭시킬 수 있고, 이에 따라 동작 전압을 감소시킬 수 있는 이중 게이트 구조의 플래시 메모리를 제작하였다. 그 결과, capacitive coupling 효과에 의하여 크게 증폭된 메모리 윈도우를 얻을 수 있음을 확인하였고, 저전압 구동 및 신뢰성을 향상시킬 수 있음을 확인하였다.

  • PDF

On the Considerations of VFTO Measuring Systems using by Capacitive Coupling (Capacitive Coupling을 이용한 VFTO 측정계에 대한 고찰)

  • Kim, Jin-Gi;Kim, Min-Kyu;Kim, Yung-Bae;Moon, In-Wook;Kim, Ik-Soo;Lee, Hyeong-Ho;Kim, Jong-Yeon;Chung, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1520-1522
    • /
    • 1994
  • The clarification of insulation capability of GIS(Gas Insulated Substation) under very fast transient overvoltages such as disconnector/circuit-breaker induced surge is very important for establishing not only a rational insulation testing method, but also insulation design intending to make GIS more reliable and more minimized. One of the absolute prerequisits for this is that more accurate measurement of VFTO. This describes capacitive voltage measuring methods for high voltage steep-footed oscillating waves using capacitive coupling principle and their systems including source and load impedances. Time domain response of unit step and its frequency characteristics are also investigated.

  • PDF

Fabrication of nitrogen doped ordered mesoporous carbon derived from glucosamine with hybrid capacitive behaviors

  • Zhang, Deyi;Han, Mei;Li, Yubing;Wang, Bing;Wang, Yi;Wang, Kunjie;Feng, Huixia
    • Carbon letters
    • /
    • v.23
    • /
    • pp.9-16
    • /
    • 2017
  • This paper introduces a nitrogen-doped ordered mesoporous carbon (NOMC) derived from glucosamine with hybrid capacitive behaviors, achieved by successfully combining electrical double-layer capacitance with pseudo-capacitance behaviors. The nitrogen doping content of the fabricated NOMC reached 7.4 at% while its specific surface area ($S_{BET}$) and total pore volume reached $778m^2g^{-1}$ and $1.17cm^3g^{-1}$, respectively. A dual mesoporous structure with small mesopores centered at 3.6 nm and large mesopores centered at 9.9 nm was observed. The specific capacitance of the reported materials reached up to $328Fg^{-1}$, which was 2.1 times higher than that of pristine CMK-3. The capacitance retention rate was found to be higher than 87.9% after 1000 charge/discharge cycles. The supplementary pseudocapacitance as well as the enhanced wettability and conductivity due to the incorporation of nitrogen heteroatoms within the carbon matrixes were found to be responsible for the excellent capacitive performance of the reported NOMC materials.

Comparison of CDI and MCDI applied with sulfonated and aminated polysulfone polymers

  • Kim, Ji Sun;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.39-53
    • /
    • 2016
  • In this study, polysufone (PSf) was used as a base polymer to synthesize sulfonated polysulfone (SPSf) and aminated polysulfone (APSf) as cation and anion exchange polymers, respectively. Then the ion exchange polymers were coated onto the surface of commercial carbon electrodes. To compare the capacitive deionization (CDI) and membrane capacitive deionization (MCDI) processes, the pristine carbon electrodes and ionic polymer coated electrodes were tested under various operating conditions such as feed flow rate, adsorption time at fixed desorption time, and feed concentration, etc., in terms of effluent concentration and salt removal efficiency. The MCDI was confirmed to be superior to the CDI process. The performance of MCDI was 2-3 times higher than that of CDI. In particular, the reverse desorption potential was a lot better than zero potential. Typically, the salt removal efficiency 100% for 100 mg/L NaCl was obtained for MCDI at feed flow rate of 15 ml/min and adsorption/desorption time of 3 min/1 min and applied voltages 1.0 V for adsorption and -0.3 V for desorption process, and for 500 mg/L, the salt removal efficiency 91% was observed.

Assessment of 23 kV Capacitive Coupler for On-line Partial Discharge Measurements

  • Jeong, J.Y.;Kang, D.S.;Sun, J.H.;Heo, J.C.;Park, C.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • The partial discharge (PD) measurement is a very effective method to assess the winding insulation condition of high-voltage machines, since most of the insulation failure processes are directly or indirectly caused by PD. On-line PD measurements, which can detect insulation defects of winding in the early stages on rotating machines in operation, have been accepted as the most important technique. The epoxy mica capacitive coupler is currently and extensively used for on-line detection of PD pulses of high-voltage rotating machines. To evaluate the feasibility of developing a capacitive coupler that is easier to manufacture at a lower cost compared to epoxy mica couplers, a 100pF capacitive coupler made of ceramic material is designed, fabricated and tested for on-line PD measurements of 23 kV electrical machines. A series of electrical tests and accelerated aging tests are performed on the ceramic coupler to evaluate the performance requirements, long-term reliability and thermal stability for in field application. The test results show that the newly developed ceramic coupler provides equal and improved performance at a lower cost compared to epoxy mica couplers, and estimated voltage life is anticipated to surpass 100 years.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.