• Title/Summary/Keyword: Capability of Interface

Search Result 358, Processing Time 0.035 seconds

Study on Comparison of an I/O Program Execution Time to Intel Series μPs : 8085, 8086, 8051 and 80386 (마이크로프로세서 I/O 프로그램 실행시간 비교 연구 : 8085, 8086, 8051 및 80386)

  • Lee, Young-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.59-65
    • /
    • 2013
  • Microprocessors of 8 to 16 bits have become the first step of today's computer development with excellent capability and a lot of those are still used in the educational spots. In this study, execution times of Intel series microprocessors(${\mu}ps$) available to microprocessor systems of 8 to 32 bits are obtained and compared by I/O programs. The compared result showed that execution time related to the instruction cycles of 8 bit 8051 was longer than that of 8 bit 8051 and of 16 bit 8086 by a lot of number of clocks in cases of clock frequencies at 4 MHz and at 12 MHz. In cases of really many using ${\mu}p$ clock frequencies, it showed that execution times of instructions have become faster by the order of 8085, 8086, 8051 and 80386. It can be helped to interface with ${\mu}ps$ for real time control through comparing with execution times of I/O programs by mainly many usable Intel series ${\mu}ps$ in our nation.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF

Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development (모델기반 시스템공학을 응용한 대형복합기술 시스템 개발)

  • Park, Joong-Yong;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

InfoFlow: A Web-based Workflow Management System

  • Kim, Yeong-Ho;Kang, Suk-Ho;Kim, Dong-Soo;Heo, Won-Chang;Ko, Young-Myoung;Lee, Sang-Jin;Joo, Kyoung-Jun
    • Proceedings of the CALSEC Conference
    • /
    • 1999.07b
    • /
    • pp.587-596
    • /
    • 1999
  • In this paper, we introduce the design and development of a web-based workflow management system. The goal of the developed system is to manage business processes occurring in the CITIS (Contractor Integrated Technical Information Services) environment. The system is composed of three main modules: Process Designer, Workflow Engine, and Client modules. The Process Designer is a module that provides the environment for the build-time function, which generates the specifications of processes. The module presents the capability of defining nested process models, which is powerful in particular for designing complex processes. Since the other two modules are implemented using pure Java technology, the Workflow Engine can be implemented on any platform and the Client programs can be accessed via the WWW interface. This indicates that there is no need to install any client programs at the client-sides. Users who has a connection to the internet with web browsers, such as Internet Explorer and Netscape Navigator, and has a proper right of access can utilize the normal client, monitoring client, and system administration client programs. Communications between the workflow engine and the clients are implemented using the java servlet mechanism. The workflow system can serve as the underlying platform of process management tool in CALS and CITIS environments. An example scenario of using the system is presented.

  • PDF

A Study on Network Performance Improvement Using Multipath in Global Mobile Ad Hoc Network (Global Mobile Ad Hoc Network에서 다중경로를 이용한 네트워크 성능향상에 관한 연구)

  • Kim, Jae-Ho;Bae, Jin-Seung;Jung, Chan-Hyuk;Lee, Ki-Won;Moon, Tae-Soo;Ha, Jae-Seung;You, Choong-Yeul;Lee, Kwang-Bae;Kim, Hyun-Wook
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • With the advent of Ubiquitous environment, wired-wireless combination network is being studied very actively in which mobile nodes having multi-hop communication capability connect wired internet network easily, and shares the information. The study of wired and wireless combination network between MANET(Mobile Ad Hoc Network) and wired network is being focused only on the configuration of heterogeneous network interface. The proposed algorithm establishes independent multi-paths between source node and destination node to prevent data loss when errors happen in route. As the result, it shows that the reliability of the combination network can be improved by making data transmit continuously on the route error.

  • PDF

The holons settlement of the processing and assembly system for the human-oriented manufacturing system forming (인간중심의 제조시스템 구축을 위한 가공 및 조립시스템의 holon 설정)

  • Joung, Boum-Jin;Kim, Day-Sung;Kim, Man-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.639-643
    • /
    • 1996
  • The manufacturing system has been changed from labored manual process system, which is managed and operated by managers and operators, to CIMS(Computer Integrated Manufacturing System) for integration of manufacturing, research, development and consumption in the age of diverse customer's needs[6]. However, because it involves the hierarchical system composed of many sub-systems interface and its installation & setup cost is very expensive, CIMS has many difficulties in constructing the durable optimal system that is able to adapt to rapid in-outer circumstance change. So, HMS(Holonic Manufacturing System), the new conceptual manufacturing system having the self-problem-solving and self-organization[11], is instructed to solve these difficulties that it has in these days. The system flexibility in the HMS is able to be ensured, with the integration of human's strong points into mechatronics manufacturing system to reduce interference among sub-systems. In this paper, the manufacturing process rationalization and integration of the assembly line in an automobile industry, has lots of problems in efficiency and productivity, has been studied in an early stage of converting the present state of process system to HMS, which is human-oriented processing system, to improve the line efficiency, system productivity and reliability by using human capability effectively. This paper is derived into the human-oriented & object-oriented holons settlement of the shop floor system composed of processing, assembly and material handling system for the future holonic manufacturing system, which is going to be computer supported control system.

  • PDF