• Title/Summary/Keyword: Cap Model

Search Result 262, Processing Time 0.032 seconds

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. The method using flexible springs seems to be useful fur the practical design since its simplified model can represent the complex behaviors of pile groups efficiently. Parameter studies were performed far various pile group arrangements, pile spacings, end bearing conditions, and loading stages to analyze their effects on the lateral displacements, maximum pile bending stresses, and lateral stiffness of pile groups. Through the parameter studies, it was found that when lateral stiffness of pile groups was estimated by using three-dimensional analysis method (YSGroup), its complex behavior could be predicted better than other methods based on single pile analysis.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

Development of the Interfacial Area Concentration Measurement Method Using a Five Sensor Conductivity Probe

  • Euh, Dong-Jin;Yun, Byong-Jo;Song, Chul-Hwa;Kwon, Tae-Soon;Chung, Moon-Ki;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.433-445
    • /
    • 2000
  • The interfacial area concentration (IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAC can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly than the four sensor probe. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator.

  • PDF

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Numerical Analysis of Ground Shock Attenuation from Explosive Loading (폭발하중으로 부터 지반의 완충적 동과에 대한 수치해석적 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.19-28
    • /
    • 1988
  • An underground explosion crests shock waves, which propagate to a buried structure through the이 ground. Due to the explosion, very high stresses and large deformation occur in the ground so that the shock waves decay gradually. In this study the numerical simulation of the ground shock attenuation has teen performed. One dimensional wave equation is presented and the finite difference method is applies. A Cap model is adopted to describe the stress-strain behavior of the ground. The results are expressed by the attenuation of the peak stress and the particle vrelocity by the time and the distance.

  • PDF

Construction of 3D Earth Optical Model for Earth Remote Sensing (Amon-Ra) Instrument at L1 Halo Orbit

  • Ryu, Dong-Ok;Seong, Se-Hyun;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • We present construction of 3D Earth optical Model for in-orbit performance prediction of L1 halo orbiting earth remote sensing instrument; the Albedo Monitor and Radiometer (Amon-Ra) using Integrated Ray Tracing (IRT) computational technique. The 3 components are defined in IRT; 1) Sun model, 2) Earth system model (Atmosphere, Land and Ocean), 3)Amon-Ra Instrument model. In this report, constructed sun model has Lambertian scattering hemisphere structure. The atmosphere is composed of 16 distributed structures and each optical model includes scatter model with both reflecting and transmitting direction respond to 5 deg. intervals of azimuth and zenith angles. Land structure model uses coastline and 5 kinds of vegetation distribution data structure, and its non-Lambertian scattering is defined with the semi-empirical "parametric kernel method" used for MODIS (NASA) missions. The ocean model includes sea ice cap with the sea ice area data from NOAA, and sea water optical model which is considering non-Lambertian sun-glint scattering. The IRT computation demonstrate that the designed Amon-Ra optical system satisfies the imaging and radiometric performance requirement. The technical details of the 3D Earth Model, IRT model construction and its computation results are presented together with future-works.

  • PDF

Mediating Effects of Intrinsic Motivation on The Relationship Between Positive Psychological Capital, Psychological Empowerment and Creativity (긍정심리자본, 심리적 임파워먼트와 창의성의 관계에서 내재적 동기의 매개효과 검증)

  • Choi, Ik-Sung;Chang, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3571-3586
    • /
    • 2014
  • This study examined the relationship among PsyCap(positive psychological capital), psychological empowerment, personal creativity and verified the mediated effects of intrinsic motivation in this relationship using the SEM(Structural Equation Model). For this study, the data was collected through on/off-line surveys of members and managers from 12 different enterprises. Among the 418 answers from voluntary participating employees, 332 answers were finally used for statistical analysis. The results were as follows. First, PsyCap had a positive influence on the intrinsic motivation and personal creativity. Second, Psychological Empowerment had a positive influence on intrinsic motivation, but psychological empowerment has no influence on creativity. Third, intrinsic motivation had a meaningful influence by partially mediating PsyCap and personal creativity but completely mediated psychological empowerment and personal creativity. This study focused on intrinsic motivation among the internal factors that have influences on showing personal creativity and has importance in the point that it has suggested the statistical significance by analyzing the psychological/emotional mechanism to reinforce this intrinsic motivation in a positive way. Positive analysis on the relationships among these variables suggests a theoretical meaning on providing a future direction for the study and practical meaning on providing ideas to reinforce the employees' personal creativity. The details of this study are followed in the main text.

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.

Dynamic Behavior of Group Piles according to Pile Cap Embedded in Sandy Ground (사질토 지반에서 말뚝 캡의 근입에 따른 무리말뚝의 동적거동)

  • Kim, Seongho;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.35-41
    • /
    • 2018
  • Dynamic interaction of the ground-foundation-structure must be considered for safety of earthquake resistant design for piles supported structures. The p-y curve, which is proposed in the static load and cyclic load cases, is used for the earthquake resistant design of piles. The p-y curve does not consider dynamic interaction of the ground-foundation-structure on dynamic load cases such as earthquake. Therefore, it is difficult to apply the p-y curve to earthquake resistant design. The dynamic p-y curve by considering dynamic interaction of the ground-foundation-structure has been studied, and researches had same conditions that pile caps were on the ground surface and superstructures were added on pile caps for the simple weight. However, group piles are normally embedded into the ground except for marine structures, so it seems that the embedding the pile cap influences on the dynamic p-y curve of group piles. In this study, the shaking table model test was conducted to confirm dynamic behavior of group piles by the embedded pile cap in the ground. The result showed that dynamic behavior was different between two cases by embedding the pile cap or not.

Study on Correlation Between Timber Age, Image Bands and Vegetation Indices for Timber Age Estimation Using Landsat TM Image (Landsat TM 영상을 이용한 교목연령 추정에 영창을 주는 영상 밴드 및 식생지수에 관한 연구)

  • Lee, Jung-Bin;Heo, Joon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.583-590
    • /
    • 2008
  • This study presents a correlation between timber Age, image bands and vegetation indices for timber age estimation. Basically, this study used Landsat TM images of three difference years (1994, 1994, 1998) and difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED). Bands of 4, 5 and 7, Normalized Difference Vegetation Index (NDVI), Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SA VI) were obtained from Landsat TM images. Tasseled cap - greenness and wetness images were also made by Tasseled cap transformation. Finally, analysis of correlation between timber age, difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED), individual TM bands (4, 5, 7), Normalized Difference Vegetation Index (NDVI), Tasseled cap-Greenness, Wetness, Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SAVI) using regression model. In this study about 1,992 datasets were analyzed. The Tasseled cap - Wetness, Infrared Index (II) and Vegetation Condition Index (VCI) showed close correlation for timber age estimation.