• Title/Summary/Keyword: Canopy height model

Search Result 52, Processing Time 0.032 seconds

Wind Mapping of Singapore Using WindSim (WindSim을 이용한 싱가폴 바람지도 작성)

  • Kim, Hyun-Goo;Lee, Jia-Hua
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.

Estimation of Stand-level Above Ground Biomass in Intact Tropical Rain Forests of Brunei using Airborne LiDAR data (항공 LiDAR 자료를 이용한 브루나이 열대우림의 임분단위 지상부 생체량 추정)

  • Yoon, Mihae;Kim, Eunji;Kwak, Doo-Ahn;Lee, Woo-Kyun;Lee, Jong-Yeol;Kim, Moon-Il;Lee, Sohye;Son, Yowhan;Salim, Kamariah Abu
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • This study aims to quantify the stand-level above ground biomass in intact tropical rain forest of Brunei using airborne LiDAR data. Twenty four sub-plots with the size of 0.09ha ($30m{\times}30m$) were located in the 25ha study area along the altitudinal gradients. Field investigated data (Diameter at Breast Height (DBH) and individual tree position data) in sub-plots were used. Digital Surface Model (DSM), Digital Terrain Model (DTM) and Canopy Height Model (CHM) were constructed using airborne LiDAR data. CHM was divided into 24 sub-plots and 12 LiDAR height metrics were built. Multiple regression equation between the variables extracted from the LiDAR data and biomass calculated by using a allometric equation was derived. Stand-level biomass estimated from LiDAR data were distributed from 155.81 Mg/ha to 597.21 Mg/ha with the mean value of 366.48 Mg/ha. R-square value of the verification analysis was 0.84.

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

Analysis of Forest Fire Damage Using LiDAR Data and SPOT-4 Satellite Images (LiDAR 자료 및 SPOT-4 위성영상을 활용한 산불피해 분석)

  • Song, Yeong Sun;Sohn, Hong Gyoo;Lee, Seok Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.527-534
    • /
    • 2006
  • This study estimated the forest damage of Kangwon-Do fire disaster occurred April 2005. For the estimation, the delineation of fire damaged area was performed using SPOT-4 satellite image and DSM (Digital surface model)/DTM (Digital Terrain Model) was generated by airborne and ground LiDAR data to calculate forests height. The damaged amount of money was calculated in forest area using stand volume formula, combining the canopy height from forest height model and digital stock map. The total forest damage amounted to 3.9 billion won.

Modeling Knot Properties for Mongolian Pine in Northeast China

  • Jia, Weiwei;Li, Fengri;Jiang, Lichun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • This study was performed in 14 unthinned Mongolian pine (Pinus sylvestris L. var. mongolica Litvin) plantations in northeast China. Data were collected on 70 sample trees of different canopy position with diameter at breast height (DBH) ranging from 6.9 cm to 34.5 cm. Diameter and length of knots per whorl below the living crown were studied by different vertical levels divided by relative knot height (RHK) in this paper. Models taking DBH and height to the crown base (HCB) as independent variables were developed to predict knot diameter (KD) in a sample whorl. According to the vertical distribution tendency and range of sound knot length (KLsound), KLsound was modeled as multiple linear function of DBH, KD and relative knot height (RHK). The loose knot length (KLloose) was described as a function of DBH, KD and height above the ground for knots (HK) in a mixed log-linear model. Results from this study can provide abundant knot information so as to describe the knot size and vertical distribution tendency of Mongolian pine plantation.

Similarity Analysis of Geospatial Height data in Forest Area by the Comparison of the Detection Probability (탐지확률 비교에 의한 산림지역 지형고도자료의 유사성 분석)

  • Song, Hyeon-Seung;Eo, Yang-Dam
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.516-518
    • /
    • 2012
  • 일반적으로 표적에 대한 탐지는 감시장비의 성능과 지형지물의 차폐 여부가 가장 큰 영향을 준다. 본 연구는 SRTM DSM (Digital Surface Model)과 국방지형정보단 DEM (Digital Elevation Model) 그리고 여기에 수목고를 고려한 DCM (Digital Canopy Model)고도를 기반으로 탐지확률 실험을 하였다. 실험결과 DCM과 DEM 기반의 탐지확률 결과가 가장 유사성이 높았고, SRTM과 DEM 기반의 탐지 확률은 차이가 나는 것으로 확인하였다. 따라서 SRTM이 이론적으로 DSM으로 고려되지만, 향후 추가적인 연구를 통해 이에 대한 분석이 더 필요할 것으로 사료된다.

Utilization of $CO_2$ Influenced by Windbreak in an Elevated Production System for Strawberry (딸기 고설재배시설에서의 이산화탄소 농도 유지를 위한 방풍막 설치 효과)

  • Kim, Y.-H.;Lee, I.-B.;Chun, Chang-Hoo;Hwang, H.-S.;Hong, S.-W.;Seo, I.-H.;Yoo, J.-I.;Bitog, Jessie P.;Kwon, K.-S.
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • The influence of windbreak to minimize the ventilation velocity near the plant canopy of a greenhouse strawberry was thoroughly investigated using computational fluid dynamics (CFD) technology. Windbreaks were constructed surrounding the plant canopy to control ventilation and maintain the concentration of the supplied $CO_2$ from the soil surface close to the strawberry plants. The influence of no windbreak, 0.15 m and 0.30 m height windbreaks with varied air velocity of 0.5, 1.0 and 1.5 m/s were simulated in the study. The concentrations of supplied $CO_2$ within the plant canopy of were measured. To simplify the model, plants were not included in the final model. Considering 1.0m/s wind velocity which is the normal wind velocity of greenhouses, the concentrations of $CO_2$ were approximately 420, 580 and 653 ppm ($1{\times}10^{-9}kg/m^3$) for no windbreak, 0.15 and 0.30 m windbreak height, respectively. Considering that the maximum concentration of $CO_2$ for the strawberry plants was around 600-800 ppm, the 0.30 m windbreak height is highly recommended. This study revealed that the windbreak was very effective in preserving $CO_2$ gas within the plant canopy. More so, the study also proved that the CFD technique can be used to determine the concentration of $CO_2$ within the plant canopy for the plants consumption at any designed condition. For an in-depth application of this study, the plants as well as the different conditions for $CO_2$ utilization, etc. should be considered.

Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data (항공 Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출)

  • Woo, Choong-Shik;Yoon, Jong-Suk;Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.251-258
    • /
    • 2007
  • Airborne Lidar (light detection and ranging) can be an effective alternative in forest inventory to overcome the limitations of conventional field survey and aerial photo interpretation. In this study, we attempt to develop methodologies to identify individual trees and to estimate tree height from airborne Lidar data. Initially, digital elevation model (DEM) data representing the exact ground surface were generated by removing non-ground returns from the multiple-return laser point clouds, obtained over the coniferous forest site of rugged terrain. Based on the canopy height model (CHM) data representing non-ground layer, individual tree heights are extracted through pseudo-grid method and moving window filtering algorithm. Comparing with field survey data and aerial photo interpretation on sample plots, the number of trees extracted from Lidar data show over 90% accuracy and tree heights were underestimated within 1.1m in average at two plantation stands of pine (Pinus koraiensis) and larch (Larix leptolepis).

Study on the Treesize Prediction Model : A case study of Zelkova serrata, Pinus strobus and Magnolia denudata (주요조경수목의 크기 예측 " 모델 "에 관한 연구 : 느티나무, 스트로브잣나무, 백목련을 대상으로)

  • 김남춘;최준수;문석기
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 1988
  • Size characteristics of three widely used landscape trees were analized to establish a methodology of size prediction as time Passes. Tree height, tree width, stem diameter(breast or surface), canopy length and tree age were measured directly and indirectly(by using photograph), and the data were analized by using regression analysis through PC-SAS. The results are summarized as follows : 1. Zelkova serrata MAKINO showed relatively slow growth rate and the tree form was changed as aged. Size predictions were available by using the regression equations listed below : Surface diameter = 0.8293 x AGE Tree height = 0.4109(0.8293 x AGE) - 0.0039(0.7273 x AGE)$^2$Tree width = 0.3240(0.8293 x AGE) - 0.0024(0.1293 x AGE)$^2$Canopy length = 0.1337(0.8293 x AGE) - 0.0020(0.7293 x AGE)$^2$2. Pinus strobus L. showed relatively fast growth rate and the tree form did not change much as aged. Size predictions were available by using the regression equations listed below. Breast diameter = 0.756 x AGE Tree height = 0.7695(0.756 x AGE) - 0.0164(0.75\ulcorner x AGE)$^2$Tree width = 0.4331(0.756 x AGE) - 0.0079(0.75\ulcorner x AGE)$^2$Canopy length = 0.1365(0.756 x AGE) - 0.0032(0.75f x AGE)$^2$ 3. In case of Magnolia denudata DESROUX, tree form was determined relatively earlier than the other two species. Si2e predictions were available by using the regression equations listed below : Surface diameter = 0.88 x AGE Tree height = 0.5412(0.88 x AGE) - 0.0110(0.88 x AGE)$^2$ Tree width = 0.3752(0.88 x AGE) - 7.0061(0.88 x AGE)$^2$Canopy length = 0.1110(0.88 x AGE) - 0.0022(0.88 x AGE)$^2$ This study aimed to find a way to predict size change of landscaping plants. This methodology will be applied to a wide range of landscape plants to provide practical data to landscape designers.

  • PDF

Distribution, Size and Development Phases of Knots for Pinus sylvestris L. var. mongolica Litvin in Northeast China

  • Jia, Weiwei;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.5 s.162
    • /
    • pp.313-320
    • /
    • 2005
  • This study was performed in a 38-year-old Mongolian pine (Pinus sylvestris L. var. mongolica Litvin) plantation in northeast China. Data were collected from 5 sample trees with different canopy position ranging in DBH from 14.6 cm to 23.8 cm. Sawn speciments that included the biggest knot were taken from the stem below the living crown. Number and distribution of knots per whorl below the living crown were studied by relative height below living crown (RHBC). A linear model expressed as function of whorl age (AGE), whorl height ($H_k$) and the stem diameter at which the whorl was located ($D_k$) was developed to predict the knot diameter and angle. The number of annual rings in four periods and the width of respective zone alone stem were used as dependant variables to analyze the knot develop phases. In average, the number of years from branch birth to ceased forming rings was 7.8, the branches remained alive for 4.2 years without forming annual rings, and branches were occluded 14.4 years after their death. These results can provide abundance branch and knot information so as to describe current and past tree growth dynamic of Mongolian pine plantation.