• Title/Summary/Keyword: Canopy cover

Search Result 85, Processing Time 0.021 seconds

The Ecological Characteristics of Classified Forest Cover Types in the Natural Forest of Sobaeksan

  • Lim, Seon-Mi;Kim, Ji Hong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.126-135
    • /
    • 2015
  • This study was conducted to evaluate the ecological characteristics of forest cover types which were classified by cluster analysis in the natural forest of Sobaeksan on the basis of the vegetation data from the point-quarter sampling method. Recognized forest cover types were 1) Mixed mesophytic forest, 2) Taxus cuspidata forest, 3) Fraxinus rhynchophylla-Quercus mongolica forest, 4) Betula ermanii forest, 5) Pinus densiflora forest, 6) Quercus mongolica mixed forest, and 7) Quercus mongolica pure forest. For those of classified types, the species composition was expressed by importance value (IV) to describe the community floristically. The species diversity was quantified using the Shannon's diversity index. The results showed that the forest cover types were characteristically different from one another in growing species and compositional rates, depending upon the type which was formed by a number of similar vegetational sample points. Species diversity indices (H') of total and overstory both were the highest in the mixed mesophytic forest (3.530 and 2.880, respectively), and lowest in the Q. mongolica pure forest (2.122 and 0.000, respectively) with only one canopy species. The highest species diversity in the mixed mesophytic forest may due to the relatively high species richness and evenness in the forest cover types. The description on ecological characteristics were suggested to understand the formation and development of forest cover types in this study area.

POTENTIAL OF MULTI-BAND SAR DATA FOR CLASSIFYING FOREST COVER TYPE

  • Shin, Jung-Il;Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.258-261
    • /
    • 2007
  • Although there have been lack of studies using X-band SAR data particularly for forestry application as compared to C-, and L-band SAR data, it has a potential to distinguish tree species because most signals are backscattered on the top of canopy. This study aimed to compare signal characteristics of multi-band SAR data including X-band for classifying tree species. The data used for the study are SIR-C/X-SAR data (X-, C-, L-band) obtained on Oct. 3, 1994 over the forest area near Seoul, S. Korea. Thirty ground sample plots were collected per each tree species. Initial comparison of backscattering coefficients among three SAR bands shows that X-band data showed better separation of tree species than C- and L-band SAR data irrespective of polarization. The weak penetrating in canopy layer might be possible source of information for X-band data to be useful for the classification of forest species and cover type mapping.

  • PDF

Current Status of Invasive Disturbance Species and Its Habitat Characteristics in Urban Forest (도시산림 내 침입교란종 출현현황 및 서식특성 연구)

  • Kim, Eunyoung;Kim, Jiyeon;Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • An invasive disturbance species has caused harm to biodiversity and ecosystem. To address the issue, identifying the characteristics of a habitat for invasive disturbance species is considered for forest management. This study analyzed a status of plant species by field survey based on belt transect method in the capital areas and established a predictive model for invasive disturbance species by logistic regression. As results of the study, the number of herb, vine, and invasive disturbance species and a canopy cover of tree would decrease from the forest edge to core areas (p<0.001). The predictive model was derived with variables of altitude, Topographic Wetness Index, distance to forest edge, and canopy cover of tree. It can be useful in estimating the presence or absence of species and predicting its spatial distribution. Further studies are needed to identify the pathway of introduction, spread, and possibility of germination for understanding the status of invasive disturbance species in more depth.

The Classification of Forest by Cluster Analysis in the Natural Forest of the Southern Region of Baekdudaegan Mountains (Cluster 분석에 의한 백두대간 남부권역 천연림의 산림 분류)

  • Lee, Jeong-Min;Hwang, Kwang-Mo;Kim, Ji-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • This study was carried out to classify forest communities and to aggregate forest cover types for the complex and diversified natural forest areas of Hwangaksan, Bakseoksan, Deogyusan, and Jirisan in southern region of Baekdudaegan Mountains. The vegetation data were collected by point-centered quarter sampling method. Eight hundred fifty one sample points were subjected to cluster analysis to classify 18 forest communities, which were aggregated into 7 representative forest cover types on the basis of community similarity from composition of canopy species. They were mixed mesophytic forest cover type, the others deciduous forest cover type, Quercus variabilis-Quercus serrata cover type, Quercus mongolica cover type, Pinus densiflora cover type, Carpinus laxiflora cover type, and Abies koreana cover type. The Quercus mongolica cover type was most widely distributed in the study areas, and this cover type tended to occur in the place of higher altitude as latitude was getting lower. Mixed mesophytic forest and the others deciduous forest cover type were commonly distributed in the areas of valley, on the other hand, Quercus mongolica cover type and Pinus densiflora cover type tended to be distributed in the areas of ridge.

Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model (SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가)

  • Park, Min-Ji;Shin, Hyung-Jin;Park, Jong-Yoon;Kang, Boo-Sik;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

Ecological Characteristics and Restoration Model of Vegetation in the Urban Forest (도시림 식생의 생태적 특성과 복원모델)

  • Kim, Seok-Kyu;Ju, Kyeong-Jung;Nam, Jung-Chil;Park, Seung-Burm
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.80-94
    • /
    • 2010
  • The purpose of this study is suggest to restoration model of Pinus thunbergii in Saha-gu, Busan. The result of this study is summarized as follows. As the results of this study, vegetation restoration model is presented by separating community planting and edge planting. In community planting, as a group of canopy, there are 6 species; Pinus thunbergii, Quercus acutissima, Quercus dentata, Quercus serrata, Quercus alienna, Quercus variabilis. As a group of understory, there are 5 species; Platycarya strobilacea, Prunus sargentii, Styrax japonica, Eurya japonica, Morus bombycis. Also as a group of shrub, there were 15 kinds of species; Ulmus pavifolia, Ulmus davidiana, Lindera obtusiloba, Elaeagnus macrophylla, Mallotus japonicus, Ligustrum obtusifolium, Sorbus alnifolia, Rhus trichocarpa, Zanthoxylum schinifolium, Rosa wichuraiana, Rhus chinensis, Viburnum erosum, Rhododendron mucronulatum, Rhododendron yedoense, Indigofera pseudotinctoria. And as a group of edge vegetation, there were 10 kinds of species; Japanese Angelica, Symplocos chinensis, Pittosporum tobira, Lespedeza maximowiczii, Lespedeza bicolor, Rubus coreanus, Rubus idaeus, Vitis thunbergii, Ampelopsis brevipedunculata, Rosa multiflora. Vegetation restoration models of Pinus thunbergii community were calculated the units $400m^2$ for the average populations of the woody layer is 24 in canopy layer, 35 in understory layer, 410 in shrub layer, 34% herbaceous layer ground cover. And the average of breast-high area and canopy area is $10,852cm^2$ in canopy layer, in understory layer $1,546cm^2$, in shrub layer $1,158,660cm^2$. The shortest distance between trees is calculated as 2.0m in canopy layer, 1.9m in understory layer.

The Numerical Simulation of Dry Deposition Velocity Of O3 using Land-Use Information in the Busan Metropolitan City (지표면 특성을 고려한 부산지역의 건성침적속도 예측)

  • 문난경;이화운
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.925-931
    • /
    • 2002
  • Land-use types should be included in air pollutant diffusion model because a complex mixture of various land-use patterns with computational grid can make errors in calculation of several parameters. However, the air pollutant diffusion model has generally been treated with a uniform component with land-use type in each mesh because of the complexity of the simulation. This study presents a numerical simulation of the horizontal distribution of $O_3$dry deposition velocity during summertime in Busan metropolitan city. The calculation of the meteorological field was conducted using the land cover data. Simulation has been performed by the following two scenarios : (1) one with current land cover data, and (2) the other with only land and sea for the surface characteristics. The results from each scenario reveals considerable differences on the meteorological fields and these differences can cause changes in the calculation values of $O_3$deposition velocity.

Controlling Mikania micrantha HBK: How effective manual cutting is?

  • Rai, Rajesh Kumar;Sandilya, Madan;Subedi, Rajan
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.235-242
    • /
    • 2012
  • Mikania micrantha, a neo-tropical vine, is spreading rapidly in the tropical part of Nepal and is now threatening the rural ecosystem including biodiversity and rural livelihoods. However, no attempt has been made to control the spread of M. micrantha. As a result, the vines are spreading freely and rapidly. After a thorough literature review and assessment of forest management practices, we proposed a manual cutting method, as it suits the Nepalese situation for several reasons: required labor is readily available, as local communities are managing forest patches, and the method does not have any potential adverse effects on non-target native species. Experimental plots were laid out in August 2011 to examine the effectiveness of manual cutting. Two different site types based on canopy coverage were selected and divided into three blocks based on cutting strategy. Four treatments were assigned across the experimental plots following a complete block design. We harvested above-ground biomass according to the assigned treatment. The results suggested that there should be at least two consecutive cuttings within a 3-week interval before flowering, and that three consecutive cuttings resulted in 91% mortality of the vines. In addition, cutting promoted regeneration of native plant species. Employing regular cutting operations can modify understory shade enhancing regeneration of native species, which is a desirable condition to constrain proliferation of M. micrantha. Periodic cuttings reduced the competitiveness of M. micrantha regardless of canopy openness, but native ground cover should be retained.

Disturbance, Diversity, Regeneration and Composition in Temperate Forests of Western Himalaya, India

  • Tiwari, Om Prakash;Sharma, Chandra Mohan;Rana, Yashwant Singh;Krishan, Ram
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.1
    • /
    • pp.6-24
    • /
    • 2019
  • We have investigated the impact of anthropogenic and natural disturbances on regeneration, composition and diversity in some temperate forests of Bhagirathi Catchment Area of Garhwal Himalaya. The forests were categorized on the basis of canopy cover and magnitude of disturbance into highly, moderately and least disturbed classes. The dominant tree species at lower elevation were Pinus roxburghii and Quercus leucotrichophora, while Abies pindrow, Q. semecarpifolia and Rhododenron arboreum were the dominant species at the upper elevational forests. Cythula tomentosa and Indegophera heterentha were the dominant shrub species present in all the forests. Similarly, Circium wallichii and Oxalis corniculata were the dominant herb species found in all forests (except Q. leucotrichophora forest), whereas Thalictrum foliolosum and Viola pilosa were noticed in each forest (except P. roxburghii forest). The tree density values oscillated between $400{\pm}10\;trees\;ha^{-1}$ to $750{\pm}89.1\;trees\;ha^{-1}$ which generally decreased from lower to higher disturbance regimes however, the total basal cover value was highest ($88.1{\pm}23.6m^2\;ha^{-1}$) in highly disturbed forest and lowest ($25.8{\pm}2.2m^2\;ha^{-1}$) in moderately disturbed forest. The shrub and herb densities were maximum in least disturbed forest, while the young regenerating individuals i.e., sapling and seedling were observed increasing from high to low disturbed forests which reflected that the forest fragmentation adversely affected the regeneration. However, A. pindrow and P. roxburghii were found invariably encroaching the habitats of R. arboreum and Q. leucotrichophora at various altitudes, respectively. The Canonical Correspondence Analysis clearly indicated that the elevation and lopping intensity have more impact on trees, while shrub and herbs were more influenced by elevation, canopy cover, light attenuation and soil erosion. Pinus roxburghii was the only species which was affected by heavy litter removal and forest fire.

Wind Mapping of Singapore Using WindSim (WindSim을 이용한 싱가폴 바람지도 작성)

  • Kim, Hyun-Goo;Lee, Jia-Hua
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.