• Title/Summary/Keyword: Canonical pathway

Search Result 43, Processing Time 0.015 seconds

Gene signature for prediction of radiosensitivity in human papillomavirus-negative head and neck squamous cell carcinoma

  • Kim, Su Il;Kang, Jeong Wook;Noh, Joo Kyung;Jung, Hae Rim;Lee, Young Chan;Lee, Jung Woo;Kong, Moonkyoo;Eun, Young-Gyu
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • Purpose: The probability of recurrence of cancer after adjuvant or definitive radiotherapy in patients with human papillomavirus-negative (HPV(-)) head and neck squamous cell carcinoma (HNSCC) varies for each patient. This study aimed to identify and validate radiation sensitivity signature (RSS) of patients with HPV(-) HNSCC to predict the recurrence of cancer after radiotherapy. Materials and Methods: Clonogenic survival assays were performed to assess radiosensitivity in 14 HNSCC cell lines. We identified genes closely correlated with radiosensitivity and validated them in The Cancer Genome Atlas (TCGA) cohort. The validated RSS were analyzed by ingenuity pathway analysis (IPA) to identify canonical pathways, upstream regulators, diseases and functions, and gene networks related to radiosensitive genes in HPV(-) HNSCC. Results: The survival fraction of 14 HNSCC cell lines after exposure to 2 Gy of radiation ranged from 48% to 72%. Six genes were positively correlated and 35 genes were negatively correlated with radioresistance, respectively. RSS was validated in the HPV(-) TCGA HNSCC cohort (n = 203), and recurrence-free survival (RFS) rate was found to be significantly lower in the radioresistant group than in the radiosensitive group (p = 0.035). Cell death and survival, cell-to-cell signaling, and cellular movement were significantly enriched in RSS, and RSSs were highly correlated with each other. Conclusion: We derived a HPV(-) HNSCC-specific RSS and validated it in an independent cohort. The outcome of adjuvant or definitive radiotherapy in HPV(-) patients with HNSCC can be predicted by analyzing their RSS, which might help in establishing a personalized therapeutic plan.

Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells

  • Yeongju, Yeo;Hayoung, Jeong;Minju, Kim;Yanghee, Choi;Koung Li, Kim;Wonhee, Suh
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.565-570
    • /
    • 2022
  • Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH.

Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers

  • Zhang, Yingying;Liu, Yingsen;Li, Jiaolong;Xing, Tong;Jiang, Yun;Zhang, Lin;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2008-2020
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods: A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn-soybean (NC) diet, one corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results: Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion: These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.