• Title/Summary/Keyword: Canny Edge Mask

Search Result 13, Processing Time 0.018 seconds

Dempster-Shafer's Evidence Theory-based Edge Detection

  • Seo, Suk-Tae;Sivakumar, Krishnamoorthy;Kwon, Soon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Edges represent significant boundary information between objects or classes. Various methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, and etc. have been proposed and widely used. The methods are based on a linear convolution of mask with pre-assigned coefficients. In this paper, we propose an edge detection method based on Dempster-Shafer's evidence theory to evaluate edgeness of the given pixel. The effectiveness of the proposed method is shown through experimental results on several test images and compared with conventional methods.

Error Correction Modeling for Construction Image Processing (건설 이미지 프로세싱을 위한 에러 제거 모델링)

  • Wu, Yuhong;Kim, Chang-Yoon;Kim, Hyoung-Kwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.234-237
    • /
    • 2009
  • 많은 건설 현장에서 카메라와 CCTV(Closed-circuit Television)와 같은 장비를 활용하여 건설 현장의 상황을 모니터링 하고 있다. 하지만 많은 작업이 실외에서 이루어지는 토목 건축공사의 특성상 적절한 수준의 영상 데이터를 축적하는 것은 쉽지 않은 일이다. 특히, 이미지 프로세싱기법을 사용 하여 자동화된 건설 관리의 수행 시, 영상 데이터의 품질에 따라 에러가 발생하여 건설 관리자가 잘못된 정보를 얻게 될 경우도 발생하게 된다. 본 연구에서는 케니엣지(Canny Edge) 인식기법과 워터쉐드(Watershed) 변환, 그리고 3D CAD Mask를 이용한 건축 구조물 기둥의 시공 상황 분석 기법에 근거하여, 영상 데이터 분석 시 오류를 최소화하기 위한 에러 제거 알고리즘을 제시한다. 실제 데이터와 비교를 통하여 그 활용 가능성 또한 검증한다.

  • PDF

Optimized Hardware Design using Sobel and Median Filters for Lane Detection

  • Lee, Chang-Yong;Kim, Young-Hyung;Lee, Yong-Hwan
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.115-125
    • /
    • 2019
  • In this paper, the image is received from the camera and the lane is sensed. There are various ways to detect lanes. Generally, the method of detecting edges uses a lot of the Sobel edge detection and the Canny edge detection. The minimum use of multiplication and division is used when designing for the hardware configuration. The images are tested using a black box image mounted on the vehicle. Because the top of the image of the used the black box is mostly background, the calculation process is excluded. Also, to speed up, YCbCr is calculated from the image and only the data for the desired color, white and yellow lane, is obtained to detect the lane. The median filter is used to remove noise from images. Intermediate filters excel at noise rejection, but they generally take a long time to compare all values. In this paper, by using addition, the time can be shortened by obtaining and using the result value of the median filter. In case of the Sobel edge detection, the speed is faster and noise sensitive compared to the Canny edge detection. These shortcomings are constructed using complementary algorithms. It also organizes and processes data into parallel processing pipelines. To reduce the size of memory, the system does not use memory to store all data at each step, but stores it using four line buffers. Three line buffers perform mask operations, and one line buffer stores new data at the same time as the operation. Through this work, memory can use six times faster the processing speed and about 33% greater quantity than other methods presented in this paper. The target operating frequency is designed so that the system operates at 50MHz. It is possible to use 2157fps for the images of 640by360 size based on the target operating frequency, 540fps for the HD images and 240fps for the Full HD images, which can be used for most images with 30fps as well as 60fps for the images with 60fps. The maximum operating frequency can be used for larger amounts of the frame processing.