• 제목/요약/키워드: Candidate genes

검색결과 608건 처리시간 0.031초

Genome-wide association studies of meat quality traits in chickens: a review

  • Jean Pierre, Munyaneza;Thisarani Kalhari, Ediriweera;Minjun, Kim;Eunjin, Cho;Aera, Jang;Hyo Jun, Choo;Jun Heon, Lee
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.407-420
    • /
    • 2022
  • Chicken dominates meat consumption because it is low in fat and high in protein and has less or no religious and cultural barriers. Recently, meat quality traits have become the focus of the poultry industry more than ever. Currently, poultry farming is focusing on meat quality to satisfy meat consumer preferences, which are mostly based on high-quality proteins and a low proportion of saturated fatty acids. Meat quality traits are polygenic traits controlled by many genes. Thus, it is difficult to improve these traits using the conventional selection method because of their low to moderate heritability. These traits include pH, colour, drop loss, tenderness, intramuscular fat (IMF), water-holding capacity, flavour, and many others. Genome-wide association studies (GWAS) are an efficient genomic tool that identifies the genomic regions and potential candidate genes related to meat quality traits. Due to their impact on the economy, meat quality traits are used as selection criteria in breeding programs. Various genes and markers related to meat quality traits in chickens have been identified. In chickens, GWAS have been successfully done for intramuscular fat (IMF) content, ultimate pH (pHu) and meat and skin colour. Moreover, GWAS have identified 7, 4, 4 and 6 potential candidate genes for IMF, pHu, meat colour and skin colour, respectively. Therefore, the current review summarizes the significant genes identified by genome-wide association studies for meat quality traits in chickens.

Comparative Transcriptome Analysis of Sucrose Biosynthesis-Associated Gene Expression Using RNA-Seq at Various Growth Periods in Sugar Beet (Beta vulgaris L.)

  • Baul Yang;Ye-Jin Lee;Dong-Gun Kim;Sang Hoon Kim;Woon Ji Kim;Jae Hoon Kim;So Hyeon Baek;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.63-63
    • /
    • 2023
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar crops and provides up to 30% of the world's sugar production. In this study, we mainly performed RNA-sequencing to obtain identify putative genes involved in biosynthesis pathway of sucrose in sugar beet and comparative transcriptomic analyses in the four developmental stages (50, 90, 160 and 330 days after seedling). As a result of the sugar content analysis, it was increased significantly from 50 to 160 days after seedling (DAS), and then decreased at 330 DAS. On the other hand, the taproot weight, length, and width were increased during all the growth periods. Out of 21,451 genes with expressed value, 21,402 (99.77%) genes had functional descriptions. Among the three comparisons, S1 (50 DAS) vs. S2 (90 DAS), S1 vs. S3 (160 DAS), and S1 vs. S4 (330 DAS), expression profiling of the transcripts was identified 4,991 with differentially expressed genes (DEGs). By comparing the top 20 enriched gene ontology (GO) terms as three comparisons, the top GO terms were commonly confirmed with external encapsulating structure, cell wall, and extracellular regions. In addition, the 38 enriched candidate genes related to sucrose biosynthetic pathway were screened from the entire DEG pool, and the candidate genes might be providing a basic data for further sugar metabolism studies in development of sugar beet taproot.

  • PDF

Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii

  • Kim, Seon-Hee;Bae, Young-An;Seoh, Ju-Young;Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.255-267
    • /
    • 2017
  • Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제27권4호
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Replicated Association Study between Tuberculosis and CLCN6, DOK7, HLA-DRA in Korean

  • Kim, Sung-Soo;Park, Min;Park, Sangjung
    • 대한의생명과학회지
    • /
    • 제26권3호
    • /
    • pp.238-243
    • /
    • 2020
  • Tuberculosis is a global public health problem and manifests itself as a difference in the genetic susceptibility of the host, along with the properties of Mycobacterium tuberculosis (MTB). The single nucleotide polymorphisms (SNPs) and candidate genes proposed in the Genome-wide association study (GWAS) on tuberculosis in a recently published Chinese population were reported. In this study, we investigated whether the genetic polymorphism of candidate genes related to tuberculosis is reproduced when targeting Koreans. The CLCN6 (rs12404124, rs198391, rs535107), DOK7 (rs1203104, rs1203103) and HLA-DRA (rs1051336) gene polymorphisms showed statistically significant results. In addition, it was also found whether it acts as an expression quantitative trait loci (eQTL) that can influence gene expression. This study confirmed that the genetic polymorphism of the three genes (CLCN6, DOK7, HLA-DRA) affects the development of tuberculosis and will help to understand the genetic specificity of tuberculosis and the interaction between pathogens and hosts.

한국인 자폐스펙트럼장애와 SLC6A4 유전다형성의 연관 연구 (No Association Study of SLC6A4 Polymorphisms with Korean Autism Spectrum Disorder)

  • 유희정;조인희;박미라;양소영;김순애
    • 생물정신의학
    • /
    • 제16권2호
    • /
    • pp.121-126
    • /
    • 2009
  • Objectives : The serotonin transporter gene(SLC6A4) is one of the most widely studied candidate genes in autism spectrum disorder(ASD), but there have been conflicting results from studies into the association between SLC6A4 and ASD. The aim of this study was to evaluate the association between single nucleotide polymorphisms(SNPs) in the SLC6A4 gene and ASD in the Korean population. Methods : We selected 12 SNPs in SLC6A4 and observed the genotype of 151 Korean ASD trios. We tested the family-based association for each individual polymorphism and haplotype by using the standard TDT method in Haploview(http://www.broad.mit.edu/mpg/haploview/). Results : Through transmission-disequilibrium testing and haplotype analysis, we could not find any statistically significant transmitted allele or haplotype. In addition, a case-control association test with Korean HapMap data did not reveal any statistical significance. Conclusion : Although serotonin-related genes must be considered candidate genes for ASD, we suggest that common SNPs of SLC6A4 are not important markers for associations with Korean ASD.

  • PDF

Development of Optimal Breeding Pigs Using DNA Marker Information

  • Kim, Sang-Wook;Roh, Jung-Gun;Cho, Yang-Il;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Jong-Joo;Kim, Kwan-Suk
    • Genomics & Informatics
    • /
    • 제8권2호
    • /
    • pp.81-85
    • /
    • 2010
  • The aim of the study was to investigate pig reference families, generated from Korean native pigs (KNP) that were crossed with Yorkshire (YS) breeds, which were used to evaluate genetic markers to select breeding animals with superior pork quality. A set of five candidate genes (PRKAG3, MC4R, CAST, ESR, and PRLR ) was analyzed for association with pork quality traits. PRKAG3 (I199V) SNP genotypes were significantly associated with muscle moisture, protein, and fat contents. The MC4R D298N polymorphism was significantly associated with meat tenderness and color traits. The CAST polymorphism was significantly associated with muscle moisture and crude protein traits. These three genes have been associated with pork quality traits in other pig populations, and some of our results are consistent with earlier studies. In addition, two reproductive candidate genes (ESR and PRLR ) did not have significant associations. These results suggest that further study is warranted to investigate and develop more DNA markers associated with pork quality in our KNP-crossed pig families.

Molecular Identification and Fine Mapping of a Major Quantitative Trait Locus, OsGPq3 for Seed Low-Temperature Germinability in Rice

  • Nari Kim;Rahmatullah Jan;Jae-Ryoung Park;Saleem Asif;Kyung-Min Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.283-283
    • /
    • 2022
  • Abiotic stresses such as high/low temperature, drought, salinity, and submergence directly or indirectly influence the physiological status and molecular mechanisms of rice which badly affect yield. Especially, the low temperature causes harmful influences in the overall process of rice growth such as uneven germination and the establishment of seedlings, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In this study, 120 lines of Cheongcheong/Nagdong double haploid population were used for quantitative trait locus analysis of low-temperature germinability. The results showed significant difference in germination under low different temperature conditions. In total, 4 QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the 4 QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real time polymerase chain reaction. Based on gene function annotation and level of expression under low-temperature, our study suggested OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding.

  • PDF