• Title/Summary/Keyword: Candidate gene

Search Result 813, Processing Time 0.019 seconds

Identification and Chemotype Profiling of Fusarium Head Blight Disease in Triticale (국내 재배 트리티케일에 발생한 붉은곰팡이병의 다양성 및 독소화학형 분석)

  • Yang, Jung-Wook;Kim, Joo-Yeon;Lee, Mi-Rang;Kang, In-Jeong;Jeong, Jung-Hyun;Park, Myoung Ryoul;Ku, Ja-Hwan;Kim, Wook-Han
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.

Gut Microbiome and Gut Immunity in Broiler Chickens Fed Allium hookeri Root Powder from Day 10 to 28 (육계 사료 내 삼채뿌리분말 첨가가 장내 미생물 및 장관면역에 미치는 영향)

  • Woonhak Ji;Inho Cho;Sang Seok Joo;Moongyeong Jung;Chae Won Lee;June Hyeok Yoon;Su Hyun An;Myunghoo Kim;Changsu Kong
    • Korean Journal of Poultry Science
    • /
    • v.50 no.3
    • /
    • pp.171-185
    • /
    • 2023
  • This study was conducted to investigate the effects of supplementation of Allium hookeri (AH) root powder on the gut microbiome, immunity, and health in broiler chickens fed experimental diets from d 10 to 28. A total of 60 10-day-old Ross 308 broilers were weighed and assigned to two dietary treatments with 5 birds per cage in a randomized complete block design based on body weight. The two experimental diets consisted of a control diet based on corn-soybean meal and the control diet supplemented with 0.3% AH root powder. All birds were fed ad libitum with experimental diets and water for 18 d. At 28 d, two birds near the median weight from each cage were selected for cecal content and small intestinal tissue sample collection. The addition of AH changed the gut microbiome by increasing probiotic candidate beneficial bacteria such as Enterococcaceae, Lactobacillaceae, Limosilactobacillus, Cuneatibacter, and Ruminoccoides. Regarding gut immunity, the supplementation of AH resulted in changes in intestinal immune cells, including reduced CD3+CD4+ T cells, which are a type of helper T cell, in the small intestine of birds (P=0.049). Additionally, there was a tendency to increase the expression of antioxidant function-related gene such as GPX2 (P=0.060), but no significant changes were observed in cytokines such as IL1b, IL6, and IL10. Overall, the addition of AH root powder may have positive effects on the microbiome of the chickens. This may help promote gut health in broiler chickens at the age of d 10 to 28.

Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates (식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성)

  • Yedam Kim;Young Seok Lee;Youngsuk Kim;Jinmyeong Song;Yeongbeen Bak;Gyulim Park;O-Mi Lee;Hong-Joo Son
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.304-312
    • /
    • 2024
  • This study was conducted to characterize strain Y10, isolated from discarded chicken feathers. Strain Y10 was identified as Bacillus amyloliquefaciens through phenotypic and 16S rRNA gene analysis. B. amyloliquefaciens Y10 exhibited plant growth-promoting activities, including the production of fungal cell-degrading enzymes (cellulase, lipase, protease, and pectinase), siderophores, ammonia, and indoleacetic acid. Furthermore, strain Y10 was able to inhibit the mycelial growth of several phytopathogenic fungi. When 0.1% sucrose as a carbon source and 0.05% casein as a nitrogen source were added to the basal medium, adjusted to pH 10, and cultured at 35℃, the degradation rate of chicken feathers by strain Y10 was about two times higher than that of the basal medium, with the feathers almost completely degraded in four days. Strain Y10 also degraded various keratin substrates, including duck feathers, wool, and human nails. It was confirmed that the feather hydrolyzates prepared using strain Y10 exhibited antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (EC50 = 0.38 mg/ml) and superoxide dismutase-like activity (EC50 = 183.7 mg/ml). These results suggest that B. amyloliquefaciens Y10 is a potential candidate for the development of bioinoculants and feed additives applicable to the agricultural and livestock industries, as well as the microbiological treatment of keratin waste.