• Title/Summary/Keyword: Candidate Gene

Search Result 813, Processing Time 0.03 seconds

Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer

  • Mu, Yong-Ping;Tang, Song;Sun, Wen-Jie;Gao, Wei-Min;Wang, Mao;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8893-8900
    • /
    • 2014
  • Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRTPCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR-196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.

Detection of Superior Markers for Polymerase Chain Reaction Diagnosis of Breast Cancer Micrometastasis in Sentinel Lymph Nodes

  • Shargh, Shohreh Alizadeh;Movafagh, Abolfazl;Zarghami, Nosratolah;Sayad, Arezou;Mansouri, Neda;Taheri, Mohammad;Pour, Atefeh Heidary;Iranpour, Mostafa;Ghaedi, Hamid;Montazeri, Vahid;Massoudi, Nilofar;Hashemi, Mehrdad;Mortazavi-Tabatabaei, SA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.179-183
    • /
    • 2016
  • Breast cancer is the most prevalent type of cancer among women around the world, and mortality is primarily caused by micro-metastatic disease. The complex mechanisms of breast cancer invasion and metastasis are intrinsically related to the malignant cell type so that early detection of micro-metastases can help prolongation of survival for patient. The aim of the present research work was evaluation of the expression status of mammoglobin protein as a candidate molecular marker in the negative sentinel lymph node (SLN). Fifty tumor specimens, and 50 normal adjacent breast tissue samples from the same patients were selected on the basis of having more than 10% tumor content for RNA extraction from SLNs. Tumor samples and normal adjacent breast tissue were archived in the form of frozen fresh tissue in liquid nitrogen. Real-time PCR was performed on a Bioner life express gradient thermal cycler system. Mammoglobin gene overexpression in breast cancer metastasis was investigated. Single marker results were mammaglobin 66.7% and CK19 50.0%, with 58.3% for the two in combination. Due to improved outcome with at least 3 genes (83.3%), it seems, triple marker evaluation will be most likely useful for detecting micro-metastases instead of studying separate genes.

Association Analyses of ${\beta}_3AR$ Trp64Arg and UCP-2 -866G/A Polymorphisms with Body Mass Index in Korean (한국인에서 ${\beta}_3AR$, UCP2 유전자의 다형성과 체질량지수의 관련성)

  • Jung, Hong-Soo;Lee, Joo-Hyun;SaKong, Jun;Bae, Sung-Wook;Kim, Jung-Hye;Kim, Jae-Ryong
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.252-261
    • /
    • 2007
  • Background : Obesity is the most common nutritional disorder in Western society as well as in Korea. Obesity results from a combination of genetic, environmental, and behavioral factors. Materials and Methods : In an attempt to investigate the association of obesity with its candidate genes, ${\beta}3$ adrenergic receptor (${\beta}_3AR$) and uncoupling protein 2 (UCP2), we analyzed polymorphisms of ${\beta}_3AR$ Trp64Arg and UCP2 -866G/A by PCR-RFLP analysis and the obesity-related phenotypes, including body mass index (BMI), fasting glucose concentration, and plasma lipid profiles in 750 subjects. Results : The Trp64Arg polymorphism in the ${\beta}_3AR$ gene was not statistically associated with the BMI. The UCP2 -866G/A polymorphism was significantly higher in obese than in non-obese subjects (P<0.05). However, the UCP2 -866A/A polymorphism was higher in the non-obese subjects. Conclusion : These results suggest that the UCP2 -866G/A polymorphism might be more useful for the prediction of obesity and obesity-associated diseases in Korean patients than the ${\beta}_3AR$ Trp64Arg polymorphism.

  • PDF

Comparison of antioxidant, ${\alpha}$-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts of Smilax china L. (청미래덩굴 잎 및 뿌리 추출물의 항산화, ${\alpha}$-Glucosidase 억제 및 항염증 활성비교)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2013
  • This study was conducted in order to compare the biological activities of leaf and root water extracts of Smilax china L. (SC) by measuring the total polyphenol and flavonoid contents, anti-oxidant activity, inhibitory effect on ${\alpha}$-glucosidase, and anti-inflammatory gene expression. The total polyphenol and flavonoid contents of SC leaf (SCLE) and root (SCRE) water extracts were 127.93 mg GAE/g and 39.50 mg GAE/g and 41.99 mg QE/g and 1.25 mg QE/g, respectively. The anti-oxidative activities of SCLE and SCRE were measured using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity assay and reducing power assay. Both SCLE and SCRE scavenged radicals in a concentration-dependent manner, and SCLE showed stronger radical scavenging activity and reducing power than SCRE; however, both SCLE and SCRE exhibited lower activities than ascorbic acid. Compared to the anti-diabetic drug acarbose, which was used as a positive control, SCLE and SCRE exhibited low ${\alpha}$-glucosidase inhibition activities; nevertheless, the activity of SCLE was 3.7 fold higher than that of SCRE. Finally, SCLE caused significantly decreased expression of the LPS-induced cytokines, iNOS, and COX-2 mRNA in RAW264.7 cells, indicating anti-inflammatory activity. These results indicate that SCLE might be a potential candidate as an anti-oxidant, anti-diabetic, and anti-inflammatory agent.

Is there an Association between Variants in Candidate Insulin Pathway Genes IGF-I, IGFBP-3, INSR, and IRS2 and Risk of Colorectal Cancer in the Iranian Population?

  • Karimi, Khatoon;Mahmoudi, Touraj;Karimi, Negar;Dolatmoradi, Hesamodin;Arkani, Maral;Farahani, Hamid;Vahedi, Mohsen;Parsimehr, Elham;Dabiri, Reza;Nobakht, Hossein;Asadi, Asadollah;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5011-5016
    • /
    • 2013
  • Background: Several epidemiological studies have shown associations between colorectal cancer (CRC) risk and type 2 diabetes and obesity. Any effects would be expected to be mediated through the insulin pathway. Therefore it is possible that variants of genes encoding components of the insulin pathway play roles in CRC susceptibility. In this study, we hypothesized that polymorphisms in the genes involving the insulin pathway are associated with risk of CRC. Materials and Methods: The associations of four single nucleotide polymorphisms (SNPs) in IGF-I (rs6214), IGFBP-3 (rs3110697), INSR (rs1052371), and IRS2 (rs2289046) genes with the risk of CRC were evaluated using a case-control design with 167 CRC cases and 277 controls by the PCR-RFLP method. Results: Overall, we observed no significant difference in genotype and allele frequencies between the cases and controls for the IGF-I, IGFBP-3, INSR, IRS2 gene variants and CRC before or after adjusting for confounders (age, BMI, sex, and smoking status). However, we observed that the IRS2 (rs2289046) GG genotype compared with AA+AG genotypes has a protective effect for CRC in normal weight subjects (p=0.035, OR=0.259, 95%CI= 0.074-0.907). Conclusions: These findings do not support plausible associations between polymorphic variations in IGF-I, IGFBP-3, INSR, IRS2 genes and risk of CRC. However, the evidence for a link between the IRS2 (rs2289046) variant and risk of CRC dependent on the BMI of the subjects, requires confirmation in subsequent studies with greater sample size.

Systematic Identification of Hepatocellular Proteins Interacting with NS5A of the Hepatitis C Virus

  • Ahn, Ji-Won;Chung, Kyung-Sook;Kim, Dong-Uk;Won, Mi-Sun;Kim, Li-La;Kim, Kyung-Shin;Nam, Mi-Young;Choi, Shin-Jung;Kim, Hyoung-Chin;Yoon, Mi-Chung;Chae, Suhn-Kee;Hoe, Kwang-Lae
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.741-748
    • /
    • 2004
  • The hepatitis C virus is associated with the development of liver cirrhosis and hepatocellular carcinomas. Among the 10 polyproteins produced by the virus, no function has been clearly assigned to the non-structural 5A (NS5A) protein. This study was designed to identify the hepatocellular proteins that interact with NS5A of the HCV. Yeast two-hybrid experiments were performed with a human liver cDNA prey-library, using five different NS5A derivatives as baits, the full-length NS5A (NS5A-F, amino acid (aa) 1~447) and its four different derivatives, denoted as NS5A-A (aa 1~150), -B (aa 1~300), -C (aa 300~447) and D (aa 150~447). NS5A-F, NS5A-B and NS5A-C gave two, two and 10 candidate clones, respectively, including an AHNAK-related protein, the secreted frizzled-related protein 4 (SFRP4), the N-myc downstream regulated gene 1 (NDRG1), the cellular retinoic acid binding protein 1 (CRABP-1), ferritin heavy chain (FTH1), translokin, tumor-associated calcium signal transducer 2 (TACSTD2), phosphatidylinositol 4-kinase (PI4K) and $centaurin{\delta}$ 2 ($CENT{\delta}2$). However, NS5A-A produced no candidates and NS5A-D was not suitable as bait due to transcriptional activity. Based on an in vitro binding assay, CRABP-1, PI4K, $CENT{\delta}2$ and two unknown fusion proteins with maltose binding protein (MBP), were confirmed to interact with the glutathione S-transferase (GST)/NS5A fusion protein. Furthermore, the interactions of CRABP-1, PI4K and $CENT{\delta}2$ were not related to the PXXP motif (class II), as judged by a domain analysis. While their biological relevance is under investigation, the results contribute to a better understanding of the possible role of NS5A in hepatocellular signaling pathways.

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration (Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성)

  • Joo, Han-Seung;Choi, Jang Won
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao;Wang, Yaru;Luo, Huiying;Shi, Pengjun;Meng, Kun;Zhou, Zhigang;Zhang, Zhifang;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1295-1300
    • /
    • 2009
  • A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

Genetic characterisation of PPARG, CEBPA and RXRA, and their influence on meat quality traits in cattle

  • Goszczynski, Daniel Estanislao;Mazzucco, Juliana Papaleo;Ripoli, Maria Veronica;Villarreal, Edgardo Leopoldo;Rogberg-Munoz, Andres;Mezzadra, Carlos Alberto;Melucci, Lilia Magdalena;Giovambattista, Guillermo
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.14.1-14.9
    • /
    • 2016
  • Background: Peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer binding protein alpha (CEBPA) and retinoid X receptor alpha (RXRA) are nuclear transcription factors that play important roles in regulation of adipogenesis and fat deposition. The objectives of this study were to characterise the variability of these three candidate genes in a mixed sample panel composed of several cattle breeds with different meat quality, validate single nucleotide polymorphisms (SNPs) in a local crossbred population (Angus - Hereford - Limousin) and evaluate their effects on meat quality traits (backfat thickness, intramuscular fat content and fatty acid composition), supporting the association tests with bioinformatic predictive studies. Results: Globally, nine SNPs were detected in the PPARG and CEBPA genes within our mixed panel, including a novel SNP in the latter. Three of these nine, along with seven other SNPs selected from the Single Nucleotide Polymorphism database (SNPdb), including SNPs in the RXRA gene, were validated in the crossbred population (N = 260). After validation, five of these SNPs were evaluated for genotype effects on fatty acid content and composition. Significant effects were observed on backfat thickness and different fatty acid contents (P < 0.05). Some of these SNPs caused slight differences in mRNA structure stability and/or putative binding sites for proteins. Conclusions: PPARG and CEBPA showed low to moderate variability in our sample panel. Variations in these genes, along with RXRA, may explain part of the genetic variation in fat content and composition. Our results may contribute to knowledge about genetic variation in meat quality traits in cattle and should be evaluated in larger independent populations.

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.