• Title/Summary/Keyword: Cancer therapeutics

Search Result 554, Processing Time 0.03 seconds

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Single Dose Intravenous Toxicity Study of A New Anthracycline Anticancer Agent (DA-125) in Rats and Mice (새로운 안트라사이클린계 항암제 DA-125의 랫드 및 마우스에서의 정맥투여 급성 독성시험)

  • 신천철;송시환;서정은;강부현;김원배;한상섭
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • This Study was conducted to assess the single dose toxicity of DA-125, a new anthracycline anti-cancer agent, in rats and mice. The Drug was administered once intravenously to both sexes of rats and mice. Then followed a 14-day period of observation. The $LD_{50}$ Values (95% confidence limit) were estimated to be 60.9 mg/kg (57.5~64.3 mg/kg) for male rats and 60.2 mg/kg (56.2~64.5 mg/kg) for female rats, and 85.8 mg/kg (81.0~90.9 mg/kg) for male mice and 84.5 mg/kg (78.2~91.9 mg/kg) for female mice. Both sexes of rats and mice given the drug revealed the clinical sign of decreased locomotor activity, emaciation, hair loss, red-dish brown urine, salivation, and watery diarrhea. In addition, body weight from the next day to the 7th day tended to be decreased slightly in rats and mice treated with DA-125. Death occurred from the next day after administration to the 12th day. Macroscopically, congestion of gastrointestinal organ, lung, and adrenal glands were found in both sexes on the dead rats and mice. Histopathological examination of dead rats manifested atrophy of spleen, hypoplasia of bone marrow, hypcplasia and necrosis of lymphocyte in thymus, atrophy of villi in small intestine (duodenum, jejunum, and ileum), hyperplasia of granular epithelium in small intestine, degeneration of germinal epithelium in testis, defer oration of tubular epithelium in kidney, and vacuolation and myolysis of myocardium in heart. Histopathological examination of dead mice revealed hypoplasia of spleen and mesenteric lymph node, local necrosis of liver, atrophy of villi in small intestine, hyperplasia of glandular epithelium in small and large intestine, degeneration of tubular in kidney, degeneration of germinal cells in testis, and slight vacuolar degeneration of myocardium in heart.

  • PDF

Therapeutic Effect of Whole Bear Bile and Its Components against Croton Oil-Induced Rectal Inflammation in Rats

  • Park, Jeong-Sook;Yoo, Dong-Ho;Lee, In-Jeong;Roh, Eun-Mi-Ri;Kim, Young-Soo;Han, Kun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.83-91
    • /
    • 2010
  • Bear bile has been used as a therapeutic for cerebral and coronary thrombosis, convulsion, hepatitis, jaundice, and abscess in traditional oriental medicine. In recent decades, the effects of bile acids on cancer, cholestasis, and liver injury have been investigated in many studies. In this study, we investigated the anti-inflammatory effects of whole bear bile (WBB) and its two major components, chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), on rectal inflammation in rats. Bile acids in WBB were quantitatively analyzed by HPLC. Rectal inflammation was induced in male Sprague-Dawley rats by insertion of croton oil-saturated cotton tips. WBB, UDCA or CDCA solution was orally administered to rats one hour after induction of rectal inflammation. Rats were sacrificed 4 or 24 hours after induction of rectal inflammation. The evaluation included measurement of weight and thickness of rectum and histopathologic examination of rectal tissue. Furthermore, we examined the inhibitory effect of WBB, UDCA or CDCA against NO production in LPS-stimulated RAW 264.7 cells. The contents of UDCA and CDCA in WBB were $39.26{\mu}g/mg$ and $47.11{\mu}g/mg$, respectively. WBB treatment significantly reduced the weight and thickness of rectum compared with UDCA or CDCA treatment. The inhibition of NO production by WBB, UDCA and CDCA in LPS-stimulated RAW 264.7 cells was much higher than that by the control. And, WBB treatment suppressed the induction of NO synthase in rectum homogenates. These results suggest that the anti-inflammatory effect of WBB is related to the suppression of NO synthase induction and the inhibition of NO production by UDCA, CDCA and other bile acids of WBB.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.

Fatty Acid Components of Hardy Kiwifruit (Actinidia arguta) as IL-4 Production Inhibitor

  • Park, Hye-Min;Son, Mi-Won;Kim, Dong-Hyun;Kim, Seon-Hee;Kim, Sung-Hoon;Kwon, Hak-Cheol;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.126-133
    • /
    • 2011
  • The fruit of Actinidia arguta (AA) has been used mainly for the treatment of skin diseases, diuresis, diabetes mellitus and osteoporosis in Korean traditional medicine. It is known that AA (hardy kiwi) fruit extract has an effect on 2-chloro-1,3,5-trinitrobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice. Mode of action for it is associated with the modulation of biphasic Th1/Th2 cytokines. Furthermore, DA9102 containing AA is a herbal medicine currently under phase II clinical trial for atopic dermatitis in Korea. However, no active principles of AA on the decrease of Th2 cytokines including IL-4 and IL-10 have been identified. In this study, bioactivity-guided fractionation of an alcohol extract from the dried fruits of AA using ELISA assay for IL-4 production led to the isolation of $\alpha$-linolenic acid (I), linoleic acid (II), ethyl linolenate (III), ethyl linoleate (IV) and ethyl stearate (V) as the major active components. These compounds showed the down-regulatory effects of IL-4 production in A23187-stimulated RBL-2H3 cells without cytotoxicity.

Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

  • Zheng, Jian;Piao, Mei Jing;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.270-276
    • /
    • 2013
  • Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofluorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxide-induced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosis-promoting mediators (i.e., B-cell lymphoma-2-associated ${\times}$ protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.

Small Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Fusion by Targeting Cavities on Heptad Repeat Trimers

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Al-Taher, Abdulla;Watanabe, Aya;Oh-hashi, Kentaro;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Al-Nazawi, Mohammed
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2020
  • Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a newly emerging viral disease with fatal outcomes. However, no MERS-CoV-specific treatment is commercially available. Given the absence of previous structure-based drug discovery studies targeting MERS-CoV fusion proteins, this set of compounds is considered the first generation of MERS-CoV small molecule fusion inhibitors. After a virtual screening campaign of 1.56 million compounds followed by cell-cell fusion assay and MERS-CoV plaques inhibition assay, three new compounds were identified. Compound numbers 22, 73, and 74 showed IC50 values of 12.6, 21.8, and 11.12 µM, respectively, and were most effective at the onset of spike-receptor interactions. The compounds exhibited safe profiles against Human embryonic kidney cells 293 at a concentration of 20 µM with no observed toxicity in Vero cells at 10 µM. The experimental results are accompanied with predicted favorable pharmacokinetic descriptors and drug-likeness parameters. In conclusion, this study provides the first generation of MERS-CoV fusion inhibitors with potencies in the low micromolar range.

Lovastatin Induces Apoptotic Cell Death by Activation of Intracellular Ca2+ Signal in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.137-144
    • /
    • 2007
  • Although lovastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, has been shown to have anti-cancer actions, the effect on human hepatoma cells was not investigated. Moreover, the exact mechanism of this action is not fully understood. In this study we investigated the mechanism by which lovastatin induces apoptosis using HepG2 human hepatoblastoma cells. Lovastatin induced apoptotic cell death in a dose-dependent manner in the cells, assessed by the flow cytometric analysis. Treatment with mevalonic acid, a precursor of cholesterol, did not significantly suppress the lovastatin-induced apoptosis. Lovastatin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the lovastatin-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas intracellular $Ca^{2+}$ reduction with BAPTA/AM and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8) completely blocked these actions of lovastatin. In addition, the lovastatin-induced apoptosis was significantly reduced by a calpain inhibitor, a broad spectrum caspase inhibitor z-VAD-fmk and inhibitors specific for caspase-9 and caspase-3 (z-LEHD-fmk and z-DEVD-fmk, respectively), but not by an inhibitor specific for caspase-8 (z-IETD-fmk). Collectively, these results suggest that lovastatin induced apoptosis of HepG2 hepatoma cells through intracellular $Ca^{2+}$ release and calpain activation, leading to triggering mitochondrial apoptotic pathway. These results further suggest that lovastatin may be valuable for the therapeutic management of human hepatoma.

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells

  • Kim, Hyun Ji;Lee, Hye Ja;Park, Mi Kyung;Gang, Kyung Jin;Byun, Hyun Jung;Park, Jeong Ho;Kim, Mi Kyung;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in a-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed a-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in a-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in a-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses a-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.