• 제목/요약/키워드: Cancer imaging

검색결과 1,199건 처리시간 0.029초

Significance of Hormone Receptor Status in Comparison of 18F -FDG-PET/CT and 99mTc-MDP Bone Scintigraphy for Evaluating Bone Metastases in Patients with Breast Cancer: Single Center Experience

  • Teke, Fatma;Teke, Memik;Inal, Ali;Kaplan, Muhammed Ali;Kucukoner, Mehmet;Aksu, Ramazan;Urakci, Zuhat;Tasdemir, Bekir;Isikdogan, Abdurrahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.387-391
    • /
    • 2015
  • Background: Fluorine-18 deoxyglucose positron emission tomography computed tomography (18F-FDG-PET/CT) and bone scintigraphy (BS) are widely used for the detection of bone involvement. The optimal imaging modality for the detection of bone metastases in hormone receptor positive (+) and negative (-) groups of breast cancer remains ambiguous. Materials and Methods: Sixty-two patients with breast cancer, who had undergone both 18F-FDG-PET/CT and BS, being eventually diagnosed as having bone metastases, were enrolled in this study. Results: 18F-FDG-PET/CT had higher sensitivity and specificity than BS. Our data showed that 18F-FDGPET/CT had a sensitivity of 93.4% and a specificity of 99.4%, whiel for BS they were 84.5%, and 89.6% in the diagnosis of bone metastases. ${\kappa}$ statistics were calculated for 18F-FDGPET/CT and BS. The ${\kappa}$-value was 0.65 between 18F-FDG-PET/CT and BS in all patients. On the other hand, the ${\kappa}$-values were 0.70 in the hormone receptor (+) group, and 0.51 in hormone receptor (-) group. The ${\kappa}$-values suggested excellent agreement between all patient and hormone receptor (+) groups, while the ${\kappa}$-values suggested good agreement in the hormone receptor (-) group. Conclusions: The sensitivity and specificity for 18F-FDG-PET/CT were higher than BS in the screening of metastatic bone lesions in all patients. Similarly 18F-FDG-PET/CT had higher sensitivity and specificity in hormone receptor (+) and (-) groups.

Diagnostic Accuracy of 18F-FDG-PET in Patients with Testicular Cancer: a Meta-analysis

  • Zhao, Jing-Yi;Ma, Xue-Lei;Li, Yan-Yan;Zhang, Bing-Lan;Li, Min-Min;Ma, Xue-Lei;Liu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3525-3531
    • /
    • 2014
  • Objective: Fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is a new technique for identifying different malignant tumors using different uptake values between tumor cells and normal tissues. Here we assessed the diagnostic accuracy of 18F-FDG-PET in patients with testicular cancer by pooling data of existing trials in a meta-analysis. Methods: PubMed/MEDLINE, Embase and Cochrane Central Trials databases were searched and studies published in English relating to the diagnostic value of FDG-PET for testicular cancer were collected. The summary receiver operating characteristic (SROC) curve was used to examine the FDG-PET accuracy. Results: A total of 16 studies which included 957 examinations in 807 patients (median age, 31.1 years) were analyzed. A meta-analysis was performed to combine the sensitivity and specificity and their 95% confidence intervals (CIs), from diagnostic odds ratio (DOR), positive likelihood ratios (PLR), negative likelihood ratio (NLR). SROC were derived to demonstrate the diagnostic accuracy of FDG-PET for testicular cancer. The pooled sensitivity and specificity were 0.75 (95% confidence interval (CI), 0.70-0.80) and 0.87 (95% CI, 0.84-0.89), respectively. The pooled DOR was 35.6 (95% CI, 12.9-98.3). The area under the curve (AUC) was 0.88. The pooled PLR and pooled NLR were 7.80 (95% CI, 3.73-16.3) and 0.31 (95% CI, 0.23-0.43), respectively. Conclusion: In patients with testicular cancer, 18F-FDG-PET demonstrated a high SROC area, and could be a potentially useful tool if combined with other imaging methods such as MRI and CT. Nevertheless, the literature focusing on the use of 18F-FDG-PET in this setting still remains limited.

Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer

  • Jeong, Kyoungyun;Kong, Seong-Ho;Bae, Seong-Woo;Park, Cho Rong;Berlth, Felix;Shin, Jae Hwan;Lee, Yun-Sang;Youn, Hyewon;Koo, Eunhee;Suh, Yun-Suhk;Park, Do Joong;Lee, Hyuk-Joon;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • 제21권2호
    • /
    • pp.191-202
    • /
    • 2021
  • Purpose: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

Diagnostic Performance of Diffusion Weighted Imaging of Malignant and Benign Pulmonary Nodules and Masses: Comparison with Positron Emission Tomography

  • Usuda, Katsuo;Sagawa, Motoyasu;Motono, Nozomu;Ueno, Masakatsu;Tanaka, Makoto;Machida, Yuichiro;Maeda, Sumiko;Matoba, Munetaka;Kuginuki, Yasuaki;Taniguchi, Mitsuru;Tonami, Hisao;Ueda, Yoshimichi;Sakuma, Tsutomu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4629-4635
    • /
    • 2014
  • Background: Diffusion-weighted imaging (DWI) makes it possible to detect malignant tumors based on the diffusion of water molecules. However, it is uncertain whether DWI has advantages over FDG-PET for distinguishing malignant from benign pulmonary nodules and masses. Materials and Methods: One hundred-forty-three lung cancers, 17 metastatic lung tumors, and 29 benign pulmonary nodules and masses were assessed in this study. DWI and FDG-PET were performed. Results: The apparent diffusion coefficient (ADC) value ($1.27{\pm}0.35{\times}10^{-3}mm^2/sec$) of malignant pulmonary nodules and masses was significantly lower than that ($1.66{\pm}0.58{\times}10^{-3}mm^2/sec$) of benign pulmonary nodules and masses. The maximum standardized uptake value (SUVmax: $7.47{\pm}6.10$) of malignant pulmonary nodules and masses were also significantly higher than that ($3.89{\pm}4.04$) of benign nodules and masses. By using optimal cutoff values for ADC ($1.44{\times}10^{-3}mm^2/sec$) and for SUVmax (3.43), which were determined with receiver operating characteristics curves (ROC curves), the sensitivity (80.0%) of DWI was significantly higher than that (70.0%) of FDG-PET. The specificity (65.5%) of DWI was equal to that (65.5%) of FDG-PET. The accuracy (77.8%) of DWI was not significantly higher than that (69.3%) of FDG-PET for pulmonary nodules and masses. As the percentage of bronchioloalveolar carcinoma (BAC) component in adenocarcinoma increased, the sensitivity of FDG-PET decreased. DWI could not help in the diagnosis of mucinous adenocarcinomas as malignant, and FDG-PET could help in the correct diagnosis of 5 out of 6 mucinous adenocarcinomas as malignant. Conclusions: DWI has higher potential than PET in assessing pulmonary nodules and masses. Both diagnostic approaches have their specific strengths and weaknesses which are determined by the underlying pathology of pulmonary nodules and masses.

Daily localization of partial breast irradiation patients with three-dimensional ultrasound imaging

  • Sayan, Mutlay;Vergalasova, Irina;Hard, Daphne;Wrigth, Heather;Archambault, Jessica;Gagne, Havaleh;Nelson, Carl;Heimann, Ruth
    • Radiation Oncology Journal
    • /
    • 제37권4호
    • /
    • pp.259-264
    • /
    • 2019
  • Purpose: Accurate localization of the lumpectomy cavity during accelerated partial breast radiation (APBR) is essential for daily setup to ensure the prescribed dose encompasses the target and avoids unnecessary irradiation to surrounding normal tissues. Three-dimensional ultrasound (3D-US) allows direct visualization of the lumpectomy cavity without additional radiation exposure. The purpose of this study was to evaluate the feasibility of 3D-US in daily target localization for APBR. Materials and methods: Forty-seven patients with stage I breast cancer who underwent breast conserving surgery were treated with a 2-week course of APBR. Patients with visible lumpectomy cavities on high quality 3D-US images were included in this analysis. Prior to each treatment, X-ray and 3D-US images were acquired and compared to images from simulation to confirm accurate position and determine shifts. Volume change of the lumpectomy cavity was determined daily with 3D-US. Results: A total of 118 images of each modality from 12 eligible patients were analyzed. The average change in cavity volume was 7.8% (range, -24.1% to 14.4%) on 3D-US from simulation to the end-of-treatment. Based on 3D-US, significantly larger shifts were necessary compared to portal films in all three dimensions: anterior/posterior (p = 7E-11), left/right (p = 0.002), and superior/inferior (p = 0.004). Conclusion: Given that the lumpectomy cavity is not directly visible via X-ray images, accurate positioning may not be fully achieved by X-ray images. Therefore, when the lumpectomy cavity is visible on US, 3D-US can be considered as an alternative to X-ray imaging during daily positioning for selected patients treated with APBR, thus avoiding additional exposure to ionizing radiation.

$Site-Specific^{99m}$Tc-Labeling of Antibody Using Dihydrazinoph-thalazine (DHZ) Conjugation to Fc Region of Heavy Chain

  • Jeong, Jae-Min;Lee, Jae-Tae;Paik, Chang-Hum;Kim, Dae-Kee;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Archives of Pharmacal Research
    • /
    • 제27권9호
    • /
    • pp.961-967
    • /
    • 2004
  • The development of an antibody labeling method with $^{99m}$Tc is important for cancer imaging. Most bifunctional chelate methods for $^{99m}$Tc labeling of antibody incorporate a $^{99m}$Tc chelator through a linkage to lysine residue. In the present study, a novel site-specific $^{99m}$Tc labeling method at carbohydrate side chain in the Fc region of 2 antibodies (T101 and rabbit anti-human serum albumin antibody (RPAb)) using dihydrazinophthalazine (DHZ) which has 2 hydrazino groups was developed. The antibodies were oxidized with sodium periodate to pro-duce aldehyde on the Fc region. Then, one hydrazine group of DHZ was conjugated with an aldehyde group of antibody through the formation of a hydrazone. The other hydrazine group was used for labeling with $^{99m}$Tc. The number of conjugated DHZ was 1.7 per antibody. $^{99m}$Tc labeling efficiency was 46-85% for T101 and 67∼87% for RPAb. Indirect labeling with DHZ conjugated antibodies showed higher stability than direct labeling with reduced antibodies. High immunoreactivities were conserved for both indirectly and directly labeled antibodies. A biodistribution study found high blood activity related to directly labeled T1 01 at early time point as well as low liver activity due to indirectly labeled T101 at later time point. However, these findings do not affect practical use. No significantly different biodistribution was observed in the other organs. The research concluded that DHZ can be used as a site-specific bifunctional chelating agent for labeling antibody with $^{99m}$Tc. Moreover, $^{99m}$Tc labeled antibody via DHZ was found to have excellent chemical and biological properties for nuclear medicine imaging.edicine imaging.

Current Trends and Recent Advances in Diagnosis, Therapy, and Prevention of Hepatocellular Carcinoma

  • Wang, Chun-Hsiang;Wey, Keh-Cherng;Mo, Lein-Ray;Chang, Kuo-Kwan;Lin, Ruey-Chang;Kuo, Jen-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3595-3604
    • /
    • 2015
  • Hepatocellular carcinoma (HCC) has been one of the most fatal malignant tumors worldwide and its associated morbidity and mortality remain of significant concern. Based on in-depth reviews of serological diagnosis of HCC, in addition to AFP, there are other biomarkers: Lens culinaris agglutinin-reactive AFP (AFP-L3), descarboxyprothrombin (DCP), tyrosine kinase with Ig and eprdermal growth factor (EGF) homology domains 2 (TIE2)-espressing monocytes (TEMs), glypican-3 (GPC3), Golgi protein 73 (GP73), interleukin-6 (IL-6), and squamous cell carcinoma antigen (SCCA) have been proposed as biomarkers for the early detection of HCC. The diagnosis of HCC is primarily based on noninvasive standard imaging methods, such as ultrasound (US), dynamic multiphasic multidetector-row CT (MDCT) and magnetic resonance imaging (MRI). Some experts advocate gadolinium diethyl-enetriamine pentaacetic acid (Gd-EOB-DTPA) MRI and contrast-enhanced US as the promising imaging madalities of choice. With regard to recent advancements in tissue markers, many cuting-edge technologies using genome-wide DNA microarrays, qRT-PCR, and proteomic and inmunostaining studies have been implemented in an attempt to identify markers for early diagnosis of HCC. Only less than half of HCC patients at initial diagnosis are at an early stage treatable with curative options: local ablation, surgical resection, or liver transplant. Transarterial chemoembolization (TACE) is considered the standard of care with palliation for intermediate stage HCC. Recent innovative procedures using drug-eluting-beads and radioembolization using Yttrium-90 may exhibit beneficial effects in HCC treatment. During the past few years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. Sorafenib is currently the only approved systemic treatment for HCC. It has been approved for the therapy of asymptomatic HCC patients with well-preserved liver function who are not candidates for potentially curative treatments, such as surgical resection or liver transplantation. In the USA, Europe and particularly Japan, hepatitis C virus (HCV) related HCC accounts for most liver cancer, as compared with Asia-Pacific regions, where hepatitis B virus (HBV) may play a more important role in HCC development. HBV vaccination, while a vaccine is not yet available against HCV, has been recognized as a best primary prevention method for HBV-related HCC, although in patients already infected with HBV or HCV, secondary prevention with antiviral therapy is still a reasonable strategy. In addition to HBV and HCV, attention should be paid to other relevant HCC risk factors, including nonalcoholic fatty liver disease due to obesity and diabetes, heavy alcohol consumption, and prolonged aflatoxin exposure. Interestingly, coffee and vitamin K2 have been proven to provide protective effects against HCC. Regarding tertiary prevention of HCC recurrence after surgical resection, addition of antiviral treatment has proven to be a rational strategy.

NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취 (Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport)

  • 정경호;이경한
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권5호
    • /
    • pp.343-349
    • /
    • 2007
  • 방사성옥소는 갑상선암의 핵의학적 영상과 방사성치료에 널리 그리고 성공적으로 사용되어 왔다. 최근 세포의 옥소섭취를 담당하는 운반체로서 Na/I symporter (NIS)의 분자세포학적 특성이 규명되고 그 유전자가 클로닝되면서 앞으로는 갑상선암 이외의 각종 암에도 NIS 유전자를 외부에서 전달함으로써 방사성옥소 치료를 적용하는 새로운 암치료 기술이 가능할 것으로 기대되고 있다. 방사성옥소를 이용한 암치료의 성공을 위해서는 NIS를 통한 표적세포의 옥소 섭취를 극대화 시키는 것이 핵심이다. TSH는 갑상선 세포의 NIS 발현을 항진시키고 retinoic acid는 갑상선암과 유방암 세포의 NIS발현을 증가시키는 효과가 있다. 또 일반 암세포에는 NIS 유전자를 전달하여 발현 시킬 수 있다. 그러나 NIS 발현 만으로는 원하는 수준의 방사성옥소 섭취를 충분히 얻지 못할 수 있다. 이는 세포의 옥소 섭취가 NIS 단백질의 총량이 아니라 세포막에 위치한 NIS의 양에 의해 결정되기 때문이다. 즉, 옥소를 섭취하려는 전사된 NIS단백질이 세포막으로 이동하여 정상적으로 기능하게 하는 조절 기전이 중요하다. NIS의 세포막 이동 기전은 아직 밝혀져 있지 않으나 다른 운반체와 유사하게 단백질의 전사후 glycosylation이나 phosphorylation이 관여할 것으로 생각된다. 본 연구진은 NIS 유전자를 전달한 암세포에서epidermal growth factor를 통한 extracellular signal regulated kinase 신호경로의 활성화가 방사성옥소 섭취를 항진시킴을 관찰하여 NIS의 전사외 기능조절 기전을 조사하고 있다. 앞으로 NIS기능에 대한 조절기전이 보다 자세하게 밝혀지면 방사성옥소 치료기술과 NIS유전자 영상기술의 개선과 발전에 도움이 될 것으로 기대된다.

BRCA 유전자 변이가 있는 유방암 환자의 자기공명영상 (Magnetic Resonance Imaging of Breast Cancer Patients with BRCA Mutation)

  • 정선영;차주희;김학희;신희정;김현지;채은영;신지은;최우정;홍민지;안세현;이종원;정경해
    • Investigative Magnetic Resonance Imaging
    • /
    • 제17권3호
    • /
    • pp.207-214
    • /
    • 2013
  • 목적: BRCA 유전자 변이가 있는 유방암의 MRI 소견을 알아보고자 하였다. 대상과 방법: 2007년 1월에서 2010년 12월 사이에 BRCA 유전자 검사와 수술전 유방 MRI를 시행한 185명의 유방암 환자를 대상으로 하였다. 그 중 33명은 유전자 변이가 있었고 152명은 유전자 변이가 없었다. 총 231개의 유방암이 발견되었고, 유전자 변이가 있었던 환자의 47개의 유방암과 변이가 없었던 환자의 184개의 유방암에 대하여 MRI에서의 형태 및 조영증강 양상을 비교하였다. 결과: MRI에서의 유방암의 형태는 두 환자군 간에 유의한 차이가 없었다. 그러나 조영증강은 BRCA 유전자 변이가 있는 환자군에서 지속형을 보이는 경우가 더 많았고 (p < 0.233), 림프절 전이는 유전자 변이가 없는 환자군에서 더 많았다. BRCA 2 유전자 변이 환자군에서 BRCA 1 유전자 변이 환자군보다 지속형 조영증강을 보이는 경우가 더 많았다. 결론: MRI에서 BRCA 유전자 변이가 있는 유방암은 변이가 없는 유방암과 형태에서 유의한 차이를 보이지 않았으나 지속형 조영증강과 같이 양성종괴에서 보이는 형태학적 특징을 보이는 경우가 더 많았다.

$^{123}I,\;^{99m}Tc$ 사람 비특이 IgG 및 $^{67}Ga-Citrate$의 실험동물에서 염증병소 섭취율의 비교 (Distribution of $^{123}I,\;^{99m}Tc-Human$ Polyclonal Nonspecific IgG and $^{67}Ga-Citrate$ in Abscess bearing Mice)

  • 임상무;우광선;정위섭;오옥두;서용섭;이종두
    • 대한핵의학회지
    • /
    • 제26권1호
    • /
    • pp.116-123
    • /
    • 1992
  • $^{123}I$ has ideal half life of 13 hours, suitable 159 keV gamma energy for imaging, and easy labeling methods. In Korea Cancer Center Hospital, $^{123}I$ has been produced by MC-50 cyclotron. The purpose of this study is looking for good labeling condition of $^{123}I$ and $^{99m}Tc$ to nonspecific human polyclonal IgG, and comparing these with $^{67}Ga-citrate$ in the abscess bearing mice. Human polyclonal nonspecific IgG was labeled with 0.2 M phosphate buffer added $^{123}I$ by chloramine T method. Human polyclonat nonspecific IgG was labeled with $^{99m}Tc-gluconate$ after activation with $\beta-mercaptoethanol$. In the abscess bearing mice, the radioactivity in the abscess was higher in 24 hours than 6 hours after injection. In the abscess, $^{123}I$ nonspecific IgG had higher uptake than $^{99m}Tc-IgG\;or\;^{67}Ga-citrate$. There was no significant difference in absecess uptake of $^{123}I-IgG$ among 24, 72, 120 hours abscess age. Further clinical researches with $^{123}I-nonspecific$ IgG, and other immunoscintigraphies using $^{123}I$ are expected.

  • PDF