• Title/Summary/Keyword: Cancer diagnostics

Search Result 94, Processing Time 0.023 seconds

Potential Importance of Proteomics in Research of Reproductive Biology (생식생물학에세 프로테오믹스의 응용)

  • Kim Ho-Seung;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The potential importance of proteomic approaches has been clearly demonstrated in other fields of human medical research, including liver and heart disease and certain forms of cancer. However, reproductive researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity, and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis(2DE) and MALDI-TOF(matrix-assisted laser desorption ionization-time of flight) MS(mass spectrometry) or protein chip array and SELDI-TOF(surface-enhanced laser desorption ionization-time of flight) MS. In addition understanding the possessing knowledge of the developing biomarkers used to assess reproductive biology will also be essential components relevant to the topic of reproduction. The continued integration of proteomic and genomic data will have a fundamental impact on our understanding of the normal functioning of cells and organisms and will give insights into complex cellular processes and disease and provides new opportunities for the development of diagnostics and therapeutics. The challenge to researchers in the field of reproduction is to harness this new technology as well as others that are available to a greater extent than at present as they have considerable potential to greatly improve our understanding of the molecular aspects of reproduction both in health and disease.

  • PDF

Expression of Bcl-2 Family in 4-Nitroquinoline 1-Oxide-Induced Tongue Carcinogenesis of the Rat (백서 혀에서의 4-nitroquinoline 1-oxide 유도 발암과정에서 Bcl-2 계 유전자의 발현)

  • Choi, Jae-Wook;Chung, Sung-Su;Lee, Geum-Sug;Kim, Byung-Gook;Kim, Jae-Hyeong;Kook, Eun-Byul;Jang, Mi-Sun;Ko, Mi-Kyeong;Jung, Kwon;Choi, Hong-Ran;Kim, Ok-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.301-317
    • /
    • 2005
  • The number of patients with tongue carcinoma is increasing rapidly among young individuals in many parts of the world. Oral carcinoma progresses from hyperplastic lesion through dysplasia to invasive carcinoma and the concept of "field cancerization" with molecular alteration has been suggested for oral cavity carcinogenesis. Significant improvement in treatment and prognosis will depend on more detailed understanding of the multi-step process leading to cancer development. To induce tongue carcinoma in rat by 4-NQO, each drinking water was made to 10 ppm, 25 ppm, 50 ppm and control (only D.W. without 4-NQO). Specimens were classified into 4 groups such as control, I (mild & moderate dysplasia), II (severe dysplasia and carcinoma in situ), III (carcinoma). The mRNA expressions of Bcl-2 family were evaluated by RT-PCR technique. For anti-apoptotic Bcl-2 family, mRNA expression of Bcl-w was down-regulated in all stages of tongue carcinogenesis model. However, mRNA expression of Bcl-2 was up-regulated. For pro-apoptotic Bcl-2 family, all members were down-regulated in all stages of tongue carcinogenesis model except for Bad mRNA in group III. In terms of BH3 only protein, mRNA expressions of Bok and Mcl-1 were down regulated in all stages of specimen, but Bmf in group II and BBC3 in group III were up-regulated. Our current findings demonstrated the involvements of mRNA expression of Bcl-2 family in multi-step tongue carcinogensis. This highlights the necessity for continued efforts to discover suitable biomakers (Bcl-2 family) for early diagnosis of the disease, and to understand its pathogenesis as a first step in improving methods of treatment. The discovery of these potential biomarkers and molecular targets for cancer diagnostics and therapeutics has the potential to significantly change the clinical approach and outcome of the disease.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).