• 제목/요약/키워드: Cancer Metabolism

검색결과 502건 처리시간 0.028초

무, 양파의 시료제조 방법에 따른 흰쥐의 지방대사와 항산화능에 관한 연구 (Effect of Dry Powders, Ethanol Extracts and Juices of Radish and Onion on Lipid Metabolism and Antioxidative Capacity in Rats)

  • 안소진;김미경
    • Journal of Nutrition and Health
    • /
    • 제34권5호
    • /
    • pp.513-524
    • /
    • 2001
  • This study was performed to investigate the effects of dry powders, ethanol extracts and juices of radish and onion on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in rats. Forty-nine male Sprague-Dawley rats weighing 157$\pm$6g were blocked into seven groups according to body weight and raised for four weeks with diets containing 5%(w/w) dry powders of two different vegetables consumed frequently by Korean-radish(Raphanus sativus L.) and onion(Allium cepa L.), ethanol extracts and juices from equal amount of each dry powder. All the powders, ethanol extracts and juices of radish and onion decreased total lipids, triglycerides and total cholesterol concentrations in plasma and liver. Above all, onion ethanol extract decreased them most remarkably. It was thought that organosulfur compounds and flavonoids extracted from onion by ethanol inhibited biosynthesis and absorption of lipid and promoted degradation of lipid. Radish powder also decreased them by increasing fecal excretions of total lipids, triglycerides and total cholesterol most effectively. Catalase and glutathine peroxidase(GSH-px) activities in red blood cell(RBC) were most remarkably increased by radish powder and onion powder respectively. Superoxide dismutase(SOD), catalase and GSH-px activities in liver were most remarkably increased by onion ethanol extract, radish powder and onion ethanol extract respectively. Xanthine oxidase(XOD) activities in liver were most effectively decreased by ethanol extracts of radish and onion. Thiobarbituric acid reactive substance (TBARS) levels in plasma and liver of experimental groups were significantly lower than those of controls. Above all, onion powder decreased them most effectively. It was thought that vitamin E and high flavonoids in onion powder inhibited lipid peroxidation, promoting liver and RBC SOD, catalase and GSH-px activities and inhibiting XOD activities effectively. Flavonoids in onion ethanol extract inhibited lipid peroxidation, promoting three antioxident enzyme activities and inhibiting XOD activities most remarkably. Also flavonoids and high vitamin C in radish powder inhibited lipid peroxidation, promoting liver and RBC catalase most remarkably and inhibiting XOD activities. In conclusion, radish and onion were effective in lowering lipid levels and inhibiting of lipid peroxidation in animal tissue. From these data, radish and onion can be recommended in the treatment and prevention of diseases such as cardiovascular disease and cancer and in delaying aging. As ethanol from onion were most effective in lowering lipid level and promoting three antioxident enzymes, and inhibited lipid peroxidation as did we should try to utilize onion skin which is discarded though reported to have abundant flavonoids. (Korean J Nutrition 34(5) : 513~524, 2001)

  • PDF

Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice

  • Yoon, AhRam;Tammen, Stephanie A.;Park, Soyoung;Han, Sung Nim;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제11권2호
    • /
    • pp.105-113
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS: Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS: The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS: HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the expressions of Casp1 and Ndufb9 in liver were regulated by their methylation statuses.

Effects of Tumor Microenvironmental Factors on DNA Methylation and Radiation Sensitivity in A549 Human Lung Adenocarcinoma

  • Oh, Jung-Min;Kim, Young-Eun;Hong, Beom-Ju;Bok, Seoyeon;Jeon, Seong-Uk;Lee, Chan-Ju;Park, Dong-Young;Kim, Il Han;Kim, Hak Jae;Ahn, G-One
    • Journal of Radiation Protection and Research
    • /
    • 제43권2호
    • /
    • pp.66-74
    • /
    • 2018
  • Background: Tumor response to anticancer therapies can much be influenced by microenvironmental factors. In this study, we determined the effect of these microenvironmental factors on DNA methylation using A549 human lung adenocarcinoma cell line. Materials and Methods: We subjected A549 cells to various conditions mimicking tumor microenvironment including hypoxia, acidosis (sodium lactate), oxidative stress ($H_2O_2$), bystander effect (supernatant from doxorubicin (Dox)-treated or irradiated cells), and immune cell infiltration (supernatant from THP-1 or Jurkat T cells). Genomic DNA was isolated from these cells and analyzed for DNA methylation. Clonogenic cell survival, gene expression, and metabolism were analyzed in cells treated with some of these conditions. Results and Discussion: We found that DNA methylation level was significantly decreased in A549 cells treated with conditioned media from Dox-treated cells or Jurkat T cells, or sodium lactate, indicating an active transcription. To determine whether the decreased DNA methylation affects radiation sensitivity, we exposed cells to these conditions followed by 6 Gy irradiation and found that cell survival was significantly increased by sodium lactate while it was decreased by conditioned media from Dox-treated cells. We further observed that cells treated with conditioned media from Dox-treated cells exhibited significant changes in expression of genes including BAX and FAS (involved in apoptosis), NADPH dehydrogenase (mitochondria), EGFR (cellular survival) and RAD51 (DNA damage repair) while sodium lactate increased cellular metabolism rather than changing the gene expression. Conclusion: Our results suggest that various tumor microenvironmental factors can differentially influence DNA methylation and hence radiosensitivity and gene expression in A549 cancer cells.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Meta- and Gene Set Analysis of Stomach Cancer Gene Expression Data

  • Kim, Seon-Young;Kim, Jeong-Hwan;Lee, Heun-Sik;Noh, Seung-Moo;Song, Kyu-Sang;Cho, June-Sik;Jeong, Hyun-Yong;Kim, Woo Ho;Yeom, Young-Il;Kim, Nam-Soon;Kim, Sangsoo;Yoo, Hyang-Sook;Kim, Yong Sung
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.200-209
    • /
    • 2007
  • We generated gene expression data from the tissues of 50 gastric cancer patients, and applied meta-analysis and gene set analysis to this data and three other stomach cancer gene expression data sets to define the gene expression changes in gastric tumors. By meta-analysis we identified genes consistently changed in gastric carcinomas, while gene set analysis revealed consistently changed biological themes. Genes and gene sets involved in digestion, fatty acid metabolism, and ion transport were consistently down-regulated in gastric carcinomas, while those involved in cellular proliferation, cell cycle, and DNA replication were consistently up-regulated. We also found significant differences between the genes and gene sets expressed in diffuse and intestinal type gastric carcinoma. By gene set analysis of cytogenetic bands, we identified many chromosomal regions with possible gross chromosomal changes (amplifications or deletions). Similar analysis of transcription factor binding sites (TFBSs), revealed transcription factors that may have caused the observed gene expression changes in gastric carcinomas, and we confirmed the overexpression of one of these, E2F1, in many gastric carcinomas by tissue array and immunohistochemistry. We have incorporated the results of our meta- and gene set analyses into a web accessible database (http://human-genome.kribb.re.kr/stomach/).

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제13권1호
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

네트워크 기반 약리학 분석 및 분자 도킹을 통한 천궁의 항암 효과 예측: 천연물에 대한 탐구 (Discovering the Anti-cancer Effects of Ligusticum Chuanxiong through Network-based Pharmacology Analysis and Molecular Docking: An Inquiry into Natural Products)

  • 한도경;손지원;성의숙;김윤숙;안원근
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.876-886
    • /
    • 2023
  • 두경부암(HNC)의 경우, 외과적 개입은 환자의 삶의 질에 심각한 영향을 미칠 수 있으며, 화학요법을 병행하게 된다. 그러나 화학요법에는 현저한 부작용이 있으므로 환자의 고통을 최소화하기 위한 보조 방법의 개발이 필요하다. 천궁(Ligusticum chuanxiong)은 동양 의학에서 뇌혈관 장애 및 두통에 사용되는 천연 허브이다. 본 연구에서는 네트워크 기반 약리학 및 분자 도킹 분석을 통해 천궁의 근본적인 항암기전을 예측하였다. 본 연구에서 HNC와 관련된 천궁의 공통 유전자를 밝혀내어 신경 활성 리간드의 대사 및 신경 전달 물질 경로와의 연관성을 확인했다. 본 연구는 천궁의 성분 중 하나인 (Z)-ligustilide 가 암세포 활성화에 관련된 heat shock protein 90의 ATP 결합 부위를 공유함을 입증했다. 이 결과는 천궁이 보조 항암제 개발을 위한 유망한 후보임을 시사하며, 향 후 더욱 새롭고 안전한 항암제의 연구개발에 과학적 근거를 제시하는 새로운 발견이다.

Soluble Expression of Recombinant Human Smp30 for Detecting Serum Smp30 Antibody Levels in Hepatocellular Carcinoma Patients

  • Zhang, Sheng-Chang;Huang, Peng;Zhao, Yong-Xiang;Liu, Shu-Yan;He, Shu-Jia;Xie, Xiao-Xun;Luo, Gou-Rong;Zhou, Su-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2383-2386
    • /
    • 2013
  • Senescence marker protein 30 (SMP30), a hepatocellular carcinoma (HCC) associated antigen, was earlier shown by our research group to be highly expressed in HCC paracancerous tissues, but have low levels in HCC tissues. In order to detect anti-SMP30 antibody in serum of HCC patients, we established pET30a-SMP30 and pColdIII-SMP30 expression systems in Escherichia coli. However, the expression product was mainly in the form of inclusion bodies. In this research, we used several combinations of chaperones, four molecular chaperone plasmids with pET30a-SMP30 and five molecular chaperone plasmids with pColdIII-SMP30 to increase the amount of soluble protein. Results showed that co-expression of HIS-SMP30 with pTf16, combined with the addition of osmosis-regulator, and a two-step expression resulted in the highest enhancement of solubility. A total of 175 cases of HCC serum were studied by ELISA to detect anti-SMP30 antibody with recombinant SMP30 protein. Some 22 were positive and x2 two-sided tests all showed P>0.05, although it remained unclear whether there was a relationship between positive cases and clinical diagnostic data.

Genetic Polymorphisms of GSTM1 and GSTT1 Genes in Delhi and Comparison with other Indian and Global Populations

  • Sharma, Anita;Pandey, Arvind;Sardana, Sarita;Sehgal, Ashok;Sharma, Joginder K.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5647-5652
    • /
    • 2012
  • The glutathione S-transferases (GSTs) are involved in the metabolism of many xenobiotics, including an array of environmental carcinogens, pollutants, and drugs. Genetic polymorphisms in these genes may lead to inter-individual variation in susceptibility to various diseases. In the present study, GSTM1 and GSTT1 polymorphisms were analysed using a multiplex polymerase chain reaction in 500 normal individuals from Delhi. The frequency of individuals with GSTM1 and GSTT1 null genotypes were 168 (33.6%) and 62 (12.4%) respectively, and 54(10.8%) were having homozygous null genotype for both the genes GSTM1 and GSTT1simultaneously. The studied population was compared with reported frequencies from other neighbouring state populations, as well as with those from other ethnic groups; Europeans, Blacks, and Asians. The prevalence of homozygous null GSTM1 genotype is significantly higher in Caucasians and Asians as compared to Indian population. The frequency of GSTT1 homozygous null genotypes is also significantly higher in blacks and Asians. We believe that due to large number of individuals in this study, our results are reliable estimates of the frequencies of the GSTM1, GSTT1 in Delhi. It would provide a basic database for future clinical and genetic studies pertaining to susceptibility and inconsistency in the response and/or toxicity to drugs known to be the substrates for GSTs.

대장균을 이용한 Akt/PKB Protein Kinase의 발현 및 활성화 (Expression and Activation of Akt/PKB Protein Kinase using Escherichia coli)

  • 이재학
    • 한국미생물·생명공학회지
    • /
    • 제37권2호
    • /
    • pp.105-109
    • /
    • 2009
  • 단백질 인산화를 통한 세포내 신호전달기구 중 serine/threonine kinase에 속하는 Akt/PKB는 세포 생존과 사멸, 당대사 등을 조절하는 것으로 알려져 있다. 이러한 이유로, Akt/PKB 단백질은 천연물질들로부터 항암제를 탐색하기 위한 한 가지 target으로 사용되어 왔다. 본 연구에서는 Akt/PKB 단백질을 대량으로 생산하기 위하여 대장균의 단백질 발현 시스템을 이용하여 human Akt/PKB 단백질을 발현시켰다. 대장균에서 대량 발현된 Akt는 일반적인 조건에서는 inclusion body를 형성하였다. 배양온도 $27^{\circ}C$에서 0.01-0.09 mM IPTG로 발현 유도 시 발현된 human Akt/PKB 단백질 상당 부분이 가용화 되었다. 발현된 Akt kinase를 $Ni^{2+}$-NTA agarose column으로 정제하고, anti-Akt antibody를 이용하여 정제된 단백질이 Akt kinase 임을 확인하였다. 정제된 human Akt/PKB 단백질은 세포추출물에 존재하는 인산화 단백질을 이용하여 in vitro에서 인산화 되었으며, 인산화된 활성형 human Akt/PKB protein kinase는 human Akt/PKB protein kinase 특이 형광 peptide를 특이적으로 인산화하였다.