• Title/Summary/Keyword: Cancer, Immunotherapy

Search Result 257, Processing Time 0.027 seconds

New opportunities for nanoparticles in cancer immunotherapy

  • Park, Wooram;Heo, Young-Jae;Han, Dong Keun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Background: Recently, cancer immunotherapy has become standard for cancer treatment. Immunotherapy not only treats primary tumors, but also prevents metastasis and recurrence, representing a major advantage over conventional cancer treatments. However, existing cancer immunotherapies have limited clinical benefits because cancer antigens are often not effectively delivered to immune cells. Furthermore, unlike lymphoma, solid tumors evade anti-cancer immunity by forming an immune-suppressive tumor microenvironment (TME). One approach for overcoming these limitations of cancer immunotherapy involves nanoparticles based on biomaterials. Main body: Here, we review in detail recent trends in the use of nanoparticles in cancer immunotherapy. First, to illustrate the unmet needs for nanoparticles in this field, we describe the mechanisms underlying cancer immunotherapy. We then explain the role of nanoparticles in the delivery of cancer antigens and adjuvants. Next, we discuss how nanoparticles can be helpful within the immune-suppressive TME. Finally, we summarize current and future uses of nanoparticles with image-guided interventional techniques in cancer immunotherapy. Conclusion: Recently developed approaches for using nanoparticles in cancer immunotherapy have enormous potential for improving cancer treatment. Cancer immunotherapy based on nanoparticles is anticipated not only to overcome the limitations of existing immunotherapy, but also to generate synergistic effects via cooperation between nanoparticles and immune cells.

Cancer Immunotherapy: Cancer Vaccines

  • Lee, Na Kyung;Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.161-165
    • /
    • 2017
  • It has well reported that host immune system is closely related to cancer growth and eradication. Among cancer immunotherapy, cancer vaccine is focused on this review. Cancer vaccine is using host immune system against various tumor antigens to treat cancer. We discuss the classification and characteristics of the preventive vaccine, therapeutic vaccine and combination cancer immunotherapy.

Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy

  • Jihong Bae; Kwangcheon Park;You-Me Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.21
    • /
    • 2022
  • Cancer is one of the leading causes of death worldwide and the number of cancer patients is expected to continuously increase in the future. Traditional cancer therapies focus on inhibiting cancer growth while largely ignoring the contribution of the immune system in eliminating cancer cells. Recently, better understanding of immunological mechanisms pertaining to cancer progress has led to development of several immunotherapies, which revolutionized cancer treatment. Nonetheless, only a small proportion of cancer patients respond to immunotherapy and maintain a durable response. Among multiple factors contributing to the variability of immunotherapy response rates, commensal microbiota inhabiting patients have been identified as one of the most critical factors determining the success of immunotherapy. The functional diversity of microbiota differentially affects the host immune system and controls the efficacy of immunotherapy in individual cancer patients. Moreover, clinical studies have demonstrated that changing the gut microbiota composition by fecal microbiota transplantation in patients who failed a previous immunotherapy converts them to responders of the same therapy. Consequently, both academic and industrial researchers are putting extensive efforts to identify and develop specific bacteria or bacteria mixtures for cancer immunotherapy. In this review, we will summarize the immunological roles of commensal microbiota in cancer treatment and give specific examples of bacteria that show anticancer effect when administered as a monotherapy or as an adjuvant agent for immunotherapy. We will also list ongoing clinical trials testing the anticancer effect of commensal bacteria.

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Contemporary Strategies: Incorporating Immunotherapy into Stage 3 Non-small Cell Lung Cancer Treatment

  • Da Hyun Kang;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.3
    • /
    • pp.292-301
    • /
    • 2024
  • Stage 3 non-small cell lung cancer (NSCLC) exhibits significant diversity, making it challenging to define an optimal treatment. A collaborative multidisciplinary approach is essential in crafting individualized treatments. Previously, targeted therapies and immunotherapies were commonly used to treat patients with advanced and metastatic lung cancer. Such treatments are now being extended to individuals considered surgery, as well as patients once considered unsuitable for surgery. These changes have increased surgical success and substantially reduced postoperative recurrence. However, the possibility of severe adverse effects from immunotherapy can deter some patients from performing surgery. It is essential to carefully explore the clinical traits and biomarkers of patients who may benefit the most from immunotherapy, and patients for whom immunotherapy should not be prescribed. In summary, it's crucial to effectively integrate the latest immunotherapy in treating stage 3 NSCLC patients, thereby increasing their opportunities for surgical intervention, and ensuring they receive the best possible care.

Recent Progress in Immunotherapy for Metastatic Colorectal Cancer (전이성 대장암에 대한 면역치료의 최신 지견)

  • Seong Jung Kim;Jun Lee
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2022
  • A breakthrough in immunotherapy has changed the outlook for metastatic colorectal cancer (mCRC) treatment as the immune surveillance evasion mechanism of tumor cells has been continuously elucidated. Immune checkpoint inhibitors (ICI), such as pembrolizumab, nivolumab, and ipilimumab, which block immune checkpoint receptors or ligands have been approved for the treatment of mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC based on numerous clinical studies. However, 50% of dMMR/MSI-H mCRC and most mismatch repair proficient/microsatellite stable mCRC remained unresponsive to current immunotherapy. Clinical trials on combination therapy that adds various treatments, such as target agents, chemotherapy, or radiation therapy to ICI, have been actively conducted to overcome this immunotherapy limitation. Further studies on safety and efficacy are needed although several trials presented promising data. Additionally, dMMR/MSI-H, tumor mutation burden, and programmed cell death ligand-1 expression have been studied as biomarkers for predicting the treatment response to immunotherapy, but the discovery and validation of more sensitively predictable biomarkers remained necessary. Thus, this study aimed to review recent studies on immunotherapy in mCRC, summarize the efficacy and limitation of immunotherapy, and describe the biomarkers that predict treatment response.

An update on immunotherapy with PD-1 and PD-L1 blockade

  • Koh, Sung Ae
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.308-317
    • /
    • 2021
  • Cancer is the leading cause of death and is on the rise worldwide. Until 2010, the development of targeted treatment was mainly focused on the growth mechanisms of cancer. Since then, drugs with mechanisms related to tumor immunity, especially immune checkpoint inhibitors, have proven effective, and most pharmaceutical companies are striving to develop related drugs. Programmed cell death-1 and programmed cell death ligand-1 inhibitors have shown great success in various cancer types. They showed durable and sustainable responses and were approved by the U.S. Food and Drug Administration. However, the response to inhibitors showed low percentages of cancer patients; 15% to 20%. Therefore, combination strategies with immunotherapy and conventional treatments were used to overcome the low response rate. Studies on combination therapy have typically reported improvements in the response rate and efficacy in several cancers, including non-small cell lung cancer, small cell lung cancer, breast cancer, and urogenital cancers. The combination of chemotherapy or targeted agents with immunotherapy is one of the leading pathways for cancer treatment.

Immunogenic cell death in cancer immunotherapy

  • Minji Choi;Jisoo Shin;Chae-Eun Lee;Joo-Yoon Chung;Minji Kim;Xiuwen Yan;Wen-Hao Yang;Jong-Ho Cha
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.275-286
    • /
    • 2023
  • Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers as an adjuvant for cancer immunotherapy.

A Review of the Literature of the Promising Methodology of Cancer Immunotherapy Involving the Use of Traditional Oriental Herbal Medicine for Inhibiting Metastasis and Recurrence (한방 종양면역치료를 통한 전이재발 억제 방법론 연구)

  • Lee, Hyo-Jae;Lee, Yeon-Weol;Yoo, Hwa-Seung;Cho, Chong-Kwan
    • Journal of Korean Traditional Oncology
    • /
    • v.15 no.1
    • /
    • pp.89-103
    • /
    • 2010
  • Background: The greatest threats to the lives of cancer patients consist of both complications due to metastasis and the recurrence of original cancer. However, the existing forms of chemotherapy do not prevent these adverse events adequately because they suppress the patients' immune systems. A new methodology is required. Aim: To provide further validation for cancer immunotherapy (involving the use of traditional oriental herbal medicine). Method: Related articles, in both Korean and English were reviewed. Results: Cancer immunotherapy involving the use of traditional oriental herbal medicine can create inhospitable conditions for cancer cells and strengthen patients' immunological functioning. These effects are a demonstration of the principles of "strengthening healthy qi (扶正)" and "eliminating pathogens (祛邪)". As a result, immunotherapy protects against metastasis and original cancer recurrence by preventing the growth of cancer cells. This is very similar to the concept of a cancer dormancy therapy. Conclusion: It is strongly urged by the authors that more advanced studies be carried out on this promising therapy in the future in order to improve patients' quality of life and increase their survival time.

  • PDF

Immunotherapy for Non-Small Cell Lung Cancer

  • Yoon, Sung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.3
    • /
    • pp.111-115
    • /
    • 2014
  • Lung cancer is the leading cause of cancer-related mortality worldwide, and more than 80% of cases are of non-small cell lung cancer. Although chemotherapy and molecularly targeted therapy may provide some benefit, there is a need for newer therapies for the treatment of patients with advanced NSCLC. Immunotherapy aims to augment the recognition of cancer as foreign, to stimulate immune responsiveness, and to relieve the inhibition of the immune response that allows tolerance to tumor survival and growth. Two immunotherapeutic approaches showing promise in NSCLC are immune checkpoint inhibition and cancer vaccination. Although currently immunotherapy does not have an established role in the treatment of NSCLC, these patients should be enrolled in formal clinical trials.