• Title/Summary/Keyword: Canard-Controlled

Search Result 8, Processing Time 0.021 seconds

A Study on the Roll-Rate of a Canard-Controlled Missile with Freely Spinning Tailfins (자유회전 테일핀의 회전율 및 Roll-Lock 현상 연구)

  • Yang, Young-Rok;Lee, Jin-Hee;Kim, Mun-Seok;Park, Chan-Hyuk;Myong, Rho-Shin;Cho, Tae-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.126-129
    • /
    • 2008
  • In this study the aerodynamic characteristics of a canard-controlled missile with freely spinning tailfins were investigated by using a CFD code. The aerodynamic coefficients and roll-rate of freely spinning tailfins were calculated by an analysis of 6-DOF and the Euler code. Results were in good agreement with experimental data, and the roll-rates of freely spinning tailfins were also in good agreement with the experimental data for the roll and yaw canard control inputs. This indicates that the CFD Euler code can be applied to predict the canard-controlled missile with freely spinning tailfins.

  • PDF

A NUMERICAL STUDY ON THE ROLL LOCK-IN OF A CANARD-CONTROLLED MISSILE WITH FREELY SPINNING TAILFINS (자유회전 테일핀을 갖는 미사일에 대한 Roll Lock-in 현상의 수치적 연구)

  • Yang, Y.R.;Kim, M.S.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.48-55
    • /
    • 2009
  • In this study, roll lock-in phenomena of freely spinning tailfins were investigated by a CFD code. To analyze a motion of freely spinning tailfins, this research use a Chimera method, an Euler code and a 6 degrees of freedom analysis. The numerical results of aerodynamic characteristics and roll rates of a canard-controlled missile with freely spinning tailfins show a good agreement with wind tunnel test results. Using the roll rates calculation result of freely spinning tailfins, roll lock-in phenomena is confirmed. Roll lock-in phenomena and Roll lock-in states can be predicted through effects of the induced vortex of the canards control and the analysis of the rolling moments of tailfins due to the bank angle.

Range Sensitivity Analysis of a Canard Controlled Missile (유도 미사일의 사거리 민감도 연구)

  • Yang, Young-Rok;Cho, Tae-Hwan;Myong, Rho-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • This study describes a range sensitivity of a canard controlled missile. An investigation was conducted into the relative importance of aerodynamic parameters on a guided missile. Also this study was analyzed by quantifying their effects on the missile range. To analyze the range sensitivity of a guided missile, a trajectory analysis program of a guided missile was developed. The range sensitivity analysis was conducted on a thrust, weight, drag and lift. The result of the range sensitivity analysis shows that the design parameters with the greatest effect on the missile range are thrust, drag, weight, and lift, in descending order of importance. The thrust on range extension is quite obvious to extend a range of a guided missile. In particular, the drag exhibited greater range sensitivity than lift at a guided flight. The result also shows that missile range could be maximized by applying the appropriate launch angle and canard pitch-up control.

Aerodynamic Characteristics of a Canard-Controlled Missile with Freely Spinning Tailfins Using a Semi-Empirical Method and a CFD Code (반실험적 기법 및 CFD 코드를 이용한 자유회전 테일핀을 갖는 커나드 조종 미사일에 관한 공력해석)

  • Yang, Young-Rok;Lee, Jin-Hee;Kim, Mun-Seok;Jung, Jae-Hong;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.220-228
    • /
    • 2008
  • In this study the aerodynamic characteristics of a canard-controlled missile with freely spinning tailfins were investigated by using a semi-empirical method and a CFD code. The mean aerodynamic coefficients for the rolling and roll damping moments were first calculated and then used to predict the roll-rate of freely spinning tailfins. The calculation of roll-rate in the CFD code was carried out by combining a Chimera overset grid system and 6-DOF analysis module. The predicted roll-rate was in good agreement with the experimental data for the roll and yaw canard control inputs. It was also shown that the results are in good agreement with the prediction by a CFD code. This indicates that the semi-empirical method can be used to predict the roll-rate of a canard-controlled missile with freely spinning tailfins.

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Aerodynamics Characteristics on a Canard-Controlled Projectile (카나드에 의하여 방향조종 되는 탄의 공력특성에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • An experimental study was conducted on a subsonic wind tunnel to obtain aerodynamic coefficients for various situations in order to control the direction of a projectile. The angle of attack on the projectile was varied from $-5^{\circ}$ to $15^{\circ}$ and the roll angle of canard was changed from $0^{\circ}$ to $90^{\circ}$. The angle of attack on the canard was adjusted from $-20^{\circ}$ to $20^{\circ}$ and various inlet velocities were applied. Maximum Reynolds number based on the diameter of projectile was $5.5{\times}10^5$. The measured aerodynamic coefficients showed the same results for the various inlet velocities, and the highest effect on the canard was shown when the canard was set to the roll angle of $0^{\circ}$.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

A Prediction Study on the Roll Lock-in Phenomena of Freely Spinning Tailfins (자유회전 테일핀의 Roll Lock-in 현상 예측 연구)

  • Yang, Young-Rok;Cho, Tae-Hwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • This paper investigated the roll lock-in phenomena of a canard-controlled missile with freely spinning tailfins by applying Falanga's roll-rate equation. To confirm and validate the accuracy of the results of the roll-rate and roll lock-in prediction for freely spinning tailfins, the results were compared with Blair's wind tunnel test data. For calculation of the roll-rate of freely spinning tailfins, rolling moment coefficients of the tailfins were obtained from the wind tunnel test data and roll-damping coefficients were calculated by missile DATCOM. The roll-rate and roll lock-in of the freely spinning tailfins were calculated by applying these values to the roll-rate equation for freely spinning tailfins. The calculation results showed good agreement with the wind tunnel test data, and the roll lock-in could be anticipated as well.