• Title/Summary/Keyword: Campus Network

Search Result 298, Processing Time 0.018 seconds

Tissue Level Based Deep Learning Framework for Early Detection of Dysplasia in Oral Squamous Epithelium

  • Gupta, Rachit Kumar;Kaur, Mandeep;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Deep learning is emerging as one of the best tool in processing data related to medical imaging. In our research work, we have proposed a deep learning based framework CNN (Convolutional Neural Network) for the classification of dysplastic tissue images. The CNN has classified the given images into 4 different classes namely normal tissue, mild dysplastic tissue, moderate dysplastic tissue and severe dysplastic tissue. The dataset under taken for the study consists of 672 tissue images of epithelial squamous layer of oral cavity captured out of the biopsy samples of 52 patients. After applying the data pre-processing and augmentation on the given dataset, 2688 images were created. Further, these 2688 images were classified into 4 categories with the help of expert Oral Pathologist. The classified data was supplied to the convolutional neural network for training and testing of the proposed framework. It has been observed that training data shows 91.65% accuracy whereas the testing data achieves 89.3% accuracy. The results produced by our proposed framework are also tested and validated by comparing the manual results produced by the medical experts working in this area.

Energy-efficient full-duplex UAV relaying networks: Trajectory design for channel-model-free scenarios

  • Qi, Nan;Wang, Wei;Ye, Diliao;Wang, Mei;Tsiftsis, Theodoros A.;Yao, Rugui
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.436-446
    • /
    • 2021
  • In this paper, we propose an energy-efficient unmanned aerial vehicle (UAV) relaying network. In this network, the channels between UAVs and ground transceivers are model-free. A UAV acting as a flying relay explores better channels to assist in efficient data delivery between two ground nodes. The full-duplex relaying mode is applied for potential energy efficiency (EE) improvements. With the genetic algorithm, we manage to optimize the UAV trajectory for any arbitrary radio map scenario. Numerical results demonstrate that compared to other schemes (eg, fixed trajectory/speed policies), the proposed algorithm performs better in terms of EE. Additionally, the impact of self-interference on average EE is also investigated.

Analysis of normalization effect for earthquake events classification (지진 이벤트 분류를 위한 정규화 기법 분석)

  • Zhang, Shou;Ku, Bonhwa;Ko, Hansoek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.130-138
    • /
    • 2021
  • This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks, but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.

Cluster Model of Multilingual Training of University Students: Theory and Practice of Engineering Education

  • Suvorova, Svetlana;Khilchenko, Tatyana;Gnatyshina, Elena;Uvarina, Natalia;Savchenkov, Alexey
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.107-112
    • /
    • 2022
  • Nowadays clusters are recognized as an important instrument for promoting industrial development, innovation, competitiveness and growth. An educational cluster is a set of interrelated vocational educational institutions of various levels that are united by industry with each other and are connected by partnership with industry enterprises. This article attempts to develop and describe cluster model of university students' multilingual training. The purpose of this study is to describe multilingual training of university students and their polycultural competencies formation and to define the process of multilingual training in form of a cluster. The authors consider clusters as an integral part of the educational campus within the concept framework of Shadrinsk State Pedagogical University. To determine the essence of the concept of a cluster model of university students' multilingual training, theoretical, empirical, observational, and diagnostic methods were implemented, such as a review of scientific literature, a compilation of best practices, observation, statistical methods, etc. The authors analyzed the programs of partner universities and organized international webinars and internships for bachelors and masters abroad and developed online courses "Foreign language for undergraduate students and masters". Experimental data obtained during the implementation of cluster training show the effectiveness of the formation of students' polycultural competencies.

RENOVATION OF SEOUL RADIO ASTRONOMY OBSERVATORY AND ITS FIRST MILLIMETER VLBI OBSERVATIONS

  • Naeun, Shin;Yong-Sun, Park;Do-Young, Byun;Jinguk, Seo;Dongkok, Kim;Cheulhong, Min;Hyunwoo, Kang;Keiichi, Asada;Wen-Ping, Lo;Sascha, Trippe
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.6
    • /
    • pp.207-213
    • /
    • 2022
  • The Seoul Radio Astronomy Observatory (SRAO) operates a 6.1-meter radio telescope on the Gwanak campus of Seoul National University. We present the efforts to reform SRAO to a Very Long Baseline Interferometry (VLBI) station, motivated by recent achievements by millimeter interferometer networks such as Event Horizon Telescope, East Asia VLBI Network, and Korean VLBI Network (KVN). For this goal, we installed a receiver that had been used in the Combined Array for Research in Millimeter-wave Astronomy and a digital backend, including an H-maser clock. The existing hardware and software were also revised, which had been dedicated only to single-dish operations. After several years of preparations and test observations in 1 and 3-millimeter bands, a fringe was successfully detected toward 3C 84 in 86 GHz in June 2022 for a baseline between SRAO and KVN Ulsan station separated by 300 km. Thanks to the dual frequency operation of the receiver, the VLBI observations will soon be extended to the 1 mm band and verify the frequency phase referencing technique between 1 and 3-millimeter bands.

Using Support Vector Machine to Predict Political Affiliations on Twitter: Machine Learning approach

  • Muhammad Javed;Kiran Hanif;Arslan Ali Raza;Syeda Maryum Batool;Syed Muhammad Ali Haider
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.217-223
    • /
    • 2024
  • The current study aimed to evaluate the effectiveness of using Support Vector Machine (SVM) for political affiliation classification. The system was designed to analyze the political tweets collected from Twitter and classify them as positive, negative, and neutral. The performance analysis of the SVM classifier was based on the calculation of metrics such as accuracy, precision, recall, and f1-score. The results showed that the classifier had high accuracy and f1-score, indicating its effectiveness in classifying the political tweets. The implementation of SVM in this study is based on the principle of Structural Risk Minimization (SRM), which endeavors to identify the maximum margin hyperplane between two classes of data. The results indicate that SVM can be a reliable classification approach for the analysis of political affiliations, possessing the capability to accurately categorize both linear and non-linear information using linear, polynomial or radial basis kernels. This paper provides a comprehensive overview of using SVM for political affiliation analysis and highlights the importance of using accurate classification methods in the field of political analysis.

Exploring Public Opinion to Analyze the Consequences of Social Media on Students' Behaviors

  • Asif Nawaz;Tariq Ali;Saif Ur Rehman;Yaser Hafeez
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.159-168
    • /
    • 2024
  • Social media sites like as twitter, Facebook and flicker widely used by people, not only as a source of distributing information but also as for communication purpose, with the advancement of technology today. Now a day's one of the most frequently used communication methods are social networks. In various research studies, their use in different fields and the effects of social media on student's behaviors, chat sites and blogs caused by Facebook has been analyzed. In order to obtain the basic data, a general scanning model that is public opinion and views of parents and comments that are openly available across social media sites, used to perceive attitude of graduate students, instead of traditional methods like questionnaires and survey's conduction. A dataset of nearly 20000 reviews of parents was collected from different social media networks about their children's, while in another dataset in which 362 graduate school teachers who observe the students to use social media during classes, labs and in campus during free times, their comments about those students were chosen. As per this study, through different positive and negative factors the detailed analysis has been performed to show effect of social media on student's behavior.

Performance assessments of feature vectors and classification algorithms for amphibian sound classification (양서류 울음 소리 식별을 위한 특징 벡터 및 인식 알고리즘 성능 분석)

  • Park, Sangwook;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.401-406
    • /
    • 2017
  • This paper presents the performance assessment of several key algorithms conducted for amphibian species sound classification. Firstly, 9 target species including endangered species are defined and a database of their sounds is built. For performance assessment, three feature vectors such as MFCC (Mel Frequency Cepstral Coefficient), RCGCC (Robust Compressive Gammachirp filterbank Cepstral Coefficient), and SPCC (Subspace Projection Cepstral Coefficient), and three classifiers such as GMM(Gaussian Mixture Model), SVM(Support Vector Machine), DBN-DNN(Deep Belief Network - Deep Neural Network) are considered. In addition, i-vector based classification system which is widely used for speaker recognition, is used to assess for this task. Experimental results indicate that, SPCC-SVM achieved the best performance with 98.81 % while other methods also attained good performance with above 90 %.

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

Multi-Scaling Models of TCP/IP and Sub-Frame VBR Video Traffic

  • Erramilli, Ashok;Narayan, Onuttom;Neidhardt, Arnold;Saniee, Iraj
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.383-395
    • /
    • 2001
  • Recent measurement and simulation studies have revealed that wide area network traffic displays complex statistical characteristics-possibly multifractal scaling-on fine timescales, in addition to the well-known properly of self-similar scaling on coarser timescales. In this paper we investigate the performance and network engineering significance of these fine timescale features using measured TCP anti MPEG2 video traces, queueing simulations and analytical arguments. We demonstrate that the fine timescale features can affect performance substantially at low and intermediate utilizations, while the longer timescale self-similarity is important at intermediate and high utilizations. We relate the fine timescale structure in the measured TCP traces to flow controls, and show that UDP traffic-which is not flow controlled-lacks such fine timescale structure. Likewise we relate the fine timescale structure in video MPEG2 traces to sub-frame encoding. We show that it is possibly to construct a relatively parsimonious multi-fractal cascade model of fine timescale features that matches the queueing performance of both the TCP and video traces. We outline an analytical method ta estimate performance for traffic that is self-similar on coarse timescales and multi-fractal on fine timescales, and show that the engineering problem of setting safe operating points for planning or admission controls can be significantly influenced by fine timescale fluctuations in network traffic. The work reported here can be used to model the relevant characteristics of wide area traffic across a full range of engineering timescales, and can be the basis of more accurate network performance analysis and engineering.

  • PDF