• Title/Summary/Keyword: Campaign Pitch

Search Result 5, Processing Time 0.018 seconds

Examining the Effects of Vocabulary on Crowdfunding Success: A Comparison of Cultural and Commercial Campaigns

  • Xiang Gao;Weige Huang;Bin, Li;Sunghan Ryu
    • Asia pacific journal of information systems
    • /
    • v.32 no.2
    • /
    • pp.275-306
    • /
    • 2022
  • Crowdfunding has emerged as an important financing source for diverse cultural projects and commercial ventures in the early stages. Unlike traditional investment evaluation, where structured financial data is critical, such information is typically unavailable for crowdfunding campaigns. Instead, campaign creators prepare pitches containing essential information about themselves and the campaigns, which are crucial in attracting and persuading contributors. Prior literature has examined the effects of different aspects in campaign pitches, but a comprehensive understanding of the theme is lacking. This study aims to fill this gap by identifying the lexicon of frequently used vocabulary in campaign pitches and examining how they are associated with crowdfunding success. Moreover, we examine how the association differs between culture and commercial crowdfunding campaigns. We randomly collected 50,000 campaigns from the cultural and commercial categories on Kickstarter and extracted the 100 most used verbs in the campaign pitches. Based on a machine learning approach combined with principal component analysis, we constructed sets of verbal factors statistically significant in predicting crowdfunding success. The findings also show that cultural and commercial campaigns consist of different verbal components with different effects on crowdfunding success.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Review of Active Rotor Control Research in Canada

  • Feszty, Daniel;Nitzsche, Fred
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • The current status of Canadian research on rotor-based actively controlled technologies for helicopters is reviewed in this paper. First, worldwide research in this field is overviewed to put Canadian research into context. Then, the unique hybrid control concept of Carleton University is described, along with its key element, the "stiffness control" concept. Next, the smart hybrid active rotor control system (SHARCS) projected's history and organization is presented, which aims to demonstrate the hybrid control concept in a wind tunnel test campaign. To support the activities of SHARCS, unique computational tools, novel experimental facilities and new know-how had to be developed in Canada, among them the state-of-the-art Carleton Whirl Tower facility or the ability to design and manufacture aeroelastically scaled helicopter rotors for wind tunnel testing. In the second half of the paper, details are provided on the current status of development on the three subsystems of SHARCS, i.e. that of the actively controlled tip, the actively controlled flap and the unique stiffness-control device, the active pitch link.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Performance Test of Isolator for Reaction Wheel Micro-Vibration (인공위성 반작용휠 미소진동 감쇠기의 성능 측정)

  • Oh, Shi-Hwan;Seo, Hyun-Ho;Yim, Jo-Ryeong;Rhee, Seung-Wu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.376-379
    • /
    • 2006
  • Reaction Wheel Assembly (RWA) is one of the major disturbance sources that have influence upon the Line of Sight (LOS) of payload. A micro-vibration induced by RWA is propagated through the satellite structure and decrease the LOS stability performance of payload. This effect shall be analyzed through the jitter analysis. If a requirement or specification of payload jitter level is found to be not satisfied according to the jitter analysis campaign, some modification or redesign should be done on the satellite structure or a couple of isolator should be attached on the RWA interface in order to reduce the transmitted vibration level of RWA. The purpose of ???RWA isolator test? is to roughly evaluate the performance of vibration suppression level with a passive RWA isolator made of rubber. For this test, actual RWA is used as a vibration source and a couple of cube-shaped rubber mount designed for satellite is used as a passive isolator. There may be several considerations in order to accommodate RWA isolator to spacecraft such as not only vibration reduction performance but also thermal conduction problem, mechanical size, RWA alignment problem, etc. But in this report the feasibility of RWA isolator is analyzed only in a vibration suppression point of view. As a result, high frequency vibration of RWA above 50Hz is perfectly attenuated with isolators, however, first harmonic components below 50Hz became larger due to the additional low frequency resonance modes of roll, pitch, yaw rigid body motion of RWA+bracket.

  • PDF