• Title/Summary/Keyword: Camouflage capacity

Search Result 3, Processing Time 0.023 seconds

The Color Matching Algorithm in Near Infrared Range for Military Camouflage (IR영역에서의 위장염색을 위한 칼라 매칭 알고리즘 연구)

  • Song Kyung-Hun;Yuk Jong-Il;Ha Hun-Seung;Lee Tae-Sang;You Young-Eun;Lee Si-Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.7-14
    • /
    • 2005
  • The purpose of this study was to develop the color matching program with the excellent camouflage capacity in the near infrared range($\~$1100nm) including the visible light range for cotton fabrics. It was measured IR spectral reflectance in the range of $380\~1,100nm$ after dyed with vat dyes, and we made database for reflectance with various concentration on vat dyes which have a low reflectance value in the infrared range. The color matching algorithm that could be simulated in both the human visible light and the near infrared range was constructed by numerical analysis method using the database. In this study we also developed the dyeing conditions and dyeing process through the continuous-dyeing experiment with the vat dyes for cotton fabrics.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

Research on Equal-resolution Image Hiding Encryption Based on Image Steganography and Computational Ghost Imaging

  • Leihong Zhang;Yiqiang Zhang;Runchu Xu;Yangjun Li;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.270-281
    • /
    • 2024
  • Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.