• Title/Summary/Keyword: Camera-laser scanner

Search Result 67, Processing Time 0.031 seconds

A Deep Convolutional Neural Network Based 6-DOF Relocalization with Sensor Fusion System (센서 융합 시스템을 이용한 심층 컨벌루션 신경망 기반 6자유도 위치 재인식)

  • Jo, HyungGi;Cho, Hae Min;Lee, Seongwon;Kim, Euntai
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.

Mineral Image Analysis Technique (광물이미지 분석 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.353-354
    • /
    • 2021
  • In this study, in order to overcome the limitations of the particle size analysis method using a scanner, a microscope, or a laser, and to reduce the cost, a high-quality sampling of micro minerals is performed using an ultra-high-pixel DSLR camera and a MACRO lens. Using this, digital photos taken of standard mineral particles are analyzed to distinguish the size and shape of mineral particles at the level of grain of sand (a few mm ~ 0.063 mm). In addition, various photographing techniques for the production of three-dimensional images of mineral particles were sought, and an attempt was made to produce learning materials and images for mineral classification.

  • PDF

Accuracy Analysis of Medium Format CCD Camera RCD105 (중형카메라 RCD105 정확도 분석)

  • Kim, Tae-Hoon;Won, Jae-Ho;Kim, Chung-Pyeong;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying are used to build geography information such as digital ortho photo map and DEM(Digital Elevation Model). In this study, 3D position accuracy is compared medium format CCD camera RCD105 with airborne digital camera DMC. For this, test area was decided for aerial photograph. And using 1/1,000 scale digital map, ground control points were selected for aerial triangulation and check points were selected for horizontal/vertical accuracy analysis using softcopy stereoplotter. Accuracy of RCD105 and DMC was estimated by result of aerial triangulation and result of check points measurement of using softcopy stereoplotter. In result of aerial triangulation, RMSE(Root Mean Square Error) X, Y, Z of RCD105 is 2.1, 2.2, 1.3 times larger than DMC. In result of check point measurement using softcopy stereoplotter, horizontal/ vertical RMSE of RCD105 is 2.5, 4.3 times larger than DMC. Even though accuracy of RCD105 is lower than DMC, it is maybe possible to make digital map and ortho photo using RCD105.

A Study on the Quality of Photometric Scanning Under Variable Illumination Conditions

  • Jeon, Hyoungjoon;Hafeez, Jahanzeb;Hamacher, Alaric;Lee, Seunghyun;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.88-95
    • /
    • 2017
  • The conventional scan methods are based on a laser scanner and a depth camera, which requires high cost and complicated post-processing. Whereas in photometric scanning method, the 3D modeling data is acquired through multi-view images. This is advantageous compared to the other methods. The quality of a photometric 3D model depends on the environmental conditions or the object characteristics, but the quality is lower as compared to other methods. Therefore, various methods for improving the quality of photometric scanning are being studied. In this paper, we aim to investigate the effect of illumination conditions on the quality of photometric scanning data. To do this, 'Moai' statue is 3D printed with a size of $600(H){\times}1,000(V){\times}600(D)$. The printed object is photographed under the hard light and soft light environments. We obtained the modeling data by photometric scanning method and compared it with the ground truth of 'Moai'. The 'Point-to-Point' method used to analyseanalyze the modeling data using open source tool 'CloudCompare'. As a result of comparison, it is confirmed that the standard deviation value of the 3D model generated under the soft light is 0.090686 and the standard deviation value of the 3D model generated under the hard light is 0.039954. This proves that the higher quality 3D modeling data can be obtained in a hard light environment. The results of this paper are expected to be applied for the acquisition of high-quality data.

Audio-Visual Fusion for Sound Source Localization and Improved Attention (음성-영상 융합 음원 방향 추정 및 사람 찾기 기술)

  • Lee, Byoung-Gi;Choi, Jong-Suk;Yoon, Sang-Suk;Choi, Mun-Taek;Kim, Mun-Sang;Kim, Dai-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

A Study on the Selection and Applicability Analysis of 3D Terrain Modeling Sensor for Intelligent Excavation Robot (지능형 굴삭 로봇의 개발을 위한 로컬영역 3차원 모델링 센서 선정 및 현장 적용성 분석에 관한 연구)

  • Yoo, Hyun-Seok;Kwon, Soon-Wook;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2551-2562
    • /
    • 2013
  • Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.

A 3D Terrain Reconstruction System using Navigation Information and Realtime-Updated Terrain Data (항법정보와 실시간 업데이트 지형 데이터를 사용한 3D 지형 재구축 시스템)

  • Baek, In-Sun;Um, Ky-Hyun;Cho, Kyung-Eun
    • Journal of Korea Game Society
    • /
    • v.10 no.6
    • /
    • pp.157-168
    • /
    • 2010
  • A terrain is an essential element for constructing a virtual world in which game characters and objects make various interactions with one another. Creating a terrain requires a great deal of time and repetitive editing processes. This paper presents a 3D terrain reconstruction system to create 3D terrain in virtual space based on real terrain data. In this system, it converts the coordinate system of the height maps which are generated from a stereo camera and a laser scanner from global GPS into 3D world using the x and z axis vectors of the global GPS coordinate system. It calculates the movement vectors and the rotation matrices frame by frame. Terrain meshes are dynamically generated and rendered in the virtual areas which are represented in an undirected graph. The rendering meshes are exactly created and updated by correcting terrain data errors. In our experiments, the FPS of the system was regularly checked until the terrain was reconstructed by our system, and the visualization quality of the terrain was reviewed. As a result, our system shows that it has 3 times higher FPS than other terrain management systems with Quadtree for small area, improves 40% than others for large area. The visualization of terrain data maintains the same shape as the contour of real terrain. This system could be used for the terrain system of realtime 3D games to generate terrain on real time, and for the terrain design work of CG Movies.