• 제목/요약/키워드: Camera-based Recognition

검색결과 593건 처리시간 0.027초

Sensitivity Analysis of Excavator Activity Recognition Performance based on Surveillance Camera Locations

  • Yejin SHIN;Seungwon SEO;Choongwan KOO
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.1282-1282
    • /
    • 2024
  • Given the widespread use of intelligent surveillance cameras at construction sites, recent studies have introduced vision-based deep learning approaches. These studies have focused on enhancing the performance of vision-based excavator activity recognition to automatically monitor productivity metrics such as activity time and work cycle. However, acquiring a large amount of training data, i.e., videos captured from actual construction sites, is necessary for developing a vision-based excavator activity recognition model. Yet, complexities of dynamic working environments and security concerns at construction sites pose limitations on obtaining such videos from various surveillance camera locations. Consequently, this leads to performance degradation in excavator activity recognition models, reducing the accuracy and efficiency of heavy equipment productivity analysis. To address these limitations, this study aimed to conduct sensitivity analysis of excavator activity recognition performance based on surveillance camera location, utilizing synthetic videos generated from a game-engine-based virtual environment (Unreal Engine). Various scenarios for surveillance camera placement were devised, considering horizontal distance (20m, 30m, and 50m), vertical height (3m, 6m, and 10m), and horizontal angle (0° for front view, 90° for side view, and 180° for backside view). Performance analysis employed a 3D ResNet-18 model with transfer learning, yielding approximately 90.6% accuracy. Main findings revealed that horizontal distance significantly impacted model performance. Overall accuracy decreased with increasing distance (76.8% for 20m, 60.6% for 30m, and 35.3% for 50m). Particularly, videos with a 20m horizontal distance (close distance) exhibited accuracy above 80% in most scenarios. Moreover, accuracy trends in scenarios varied with vertical height and horizontal angle. At 0° (front view), accuracy mostly decreased with increasing height, while accuracy increased at 90° (side view) with increasing height. In addition, limited feature extraction for excavator activity recognition was found at 180° (backside view) due to occlusion of the excavator's bucket and arm. Based on these results, future studies should focus on enhancing the performance of vision-based recognition models by determining optimal surveillance camera locations at construction sites, utilizing deep learning algorithms for video super resolution, and establishing large training datasets using synthetic videos generated from game-engine-based virtual environments.

카메라 기반 문서 인식을 위한 적응적 이진화 (Adaptive Binarization for Camera-based Document Recognition)

  • 김인중
    • 한국산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.132-140
    • /
    • 2007
  • 카메라 영상은 명도의 변화와 부정확한 초점으로 인해 스캐너 영상에 비하여 화질이 저하된다. 본 연구에서는 카메라 영상에서 자주 발생하는 화질 저하에 대한 적응력을 강화하여 카메라기반 문서 인식에 적합한 이진화 방법을 제안한다. 기존의 평가에서 우수하다고 보고된 이진화 방법을 기반으로 하되, 낮은 조도와 부정확한 초점으로 인해 명도 대비가 낮은 영상에 대한 적응력을 강화하였다. 또한 이진화 시 국소 윈도우를 이용하여 기존의 방법에서 뭉개지기 쉬운 문자의 세부 구조를 섬세하게 추출하도록 개선하였다. 실험에서는 기존에 우수하다고 평가된 이진화 방법들과 제안하는 방법을 문서 인식에 적용하여 다양한 카메라 문서 영상에 대한 성능을 비교하였는데, 그 결과 제안하는 방법이 카메라로 입력받은 문서 영상의 인식에 효과적임을 확인하였다.

  • PDF

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

실외 환경에서의 증강 현실 기반의 자재 인식을 위한 최적의 카메라 배치 (Optimal Camera Arrangement for Automatic Recognition of Steel Material based on Augmented Reality in Outdoor Environment)

  • 도현민;김봉근
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.143-151
    • /
    • 2010
  • Automation and robotization has been required in construction for several decades and construction industry has become one of the important research areas in the field of service robotics. Especially in the steel construction, automatic recognition of structural steel members in the stockyard is emphasized. However, since the pose of steel frame in the stockyard is site dependent and also the stockyard is usually in the outdoor environment, it is difficult to determine the pose automatically. This paper adopts the recognition method based on the augmented reality to cope with this problem. Particularly focusing on the light condition of the outdoor environment, we formulated the optimization problem with the constraint and suggested the methodology to evaluate the optimal camera arrangement. From simulation results, sub-optimal solution for the position of the camera can be obtained.

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

화상 인식 서버 기반 감시 카메라 시스템의 성능 분석 (Performance Analysis of Surveillance Camera System Based on Image Recognition Server)

  • 쉬키라트 야라;이구연
    • 한국통신학회논문지
    • /
    • 제42권4호
    • /
    • pp.816-818
    • /
    • 2017
  • 본 논문에서는 화상인식서버 기반의 감시 카메라 네트워크 시스템에서 프레임 폐기율 및 서버의 활용도에 기반한 성능분석을 수행한다. 각 감시 카메라에 대하여 인식상태 및 유휴상태로 나누어 다른 프레임 전송률을 적용함으로서 서버의 처리용량을 기준으로 한 최적의 화상 프레임 수 및 수용 가능한 카메라 수 등의 파라미터들에 대하여 분석한다. 분석된 결과는 화상 감시 카메라 네트워크의 효율적인 운영을 위하여 유용하게 활용될 것으로 판단된다.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • 제10권4호
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

스마트 학습지: 미세 격자 패턴 인식 기반의 지능형 학습 도우미 시스템의 설계와 구현 (Design and Implementation of Smart Self-Learning Aid: Micro Dot Pattern Recognition based Information Embedding Solution)

  • 심재연;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.346-349
    • /
    • 2011
  • In this paper, we design a perceptually invisible dot pattern layout and its recognition scheme, and we apply the recognition scheme into a smart self learning aid for interactive learning aid. To increase maximum information capacity and also increase robustness to the noises, we design a ECC (error correcting code) based dot pattern with directional vector indicator. To make a smart self-learning aid, we embed the micro dot pattern (20 information bit + 15 ECC bits + 9 layout information bit) using K ink (CMYK) and extract the dot pattern using IR (infrared) LED and IR filter based camera, which is embedded in the smart pen. The reason we use K ink is that K ink is a carbon based ink in nature, and carbon is easily recognized with IR even without light. After acquiring IR camera images for the dot patterns, we perform layout adjustment using the 9 layout information bit, and extract 20 information bits from 35 data bits which is composed of 20 information bits and 15 ECC bits. To embed and extract information bits, we use topology based dot pattern recognition scheme which is robust to geometric distortion which is very usual in camera based recognition scheme. Topology based pattern recognition traces next information bit symbols using topological distance measurement from the pivot information bit. We implemented and experimented with sample patterns, and it shows that we can achieve almost 99% recognition for our embedding patterns.

로봇 환경의 템플릿 기반 얼굴인식 알고리즘 성능 비교 (Performance Comparison of Template-based Face Recognition under Robotic Environments)

  • 반규대;곽근창;지수영;정연구
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.151-157
    • /
    • 2006
  • This paper is concerned with the template-based face recognition from robot camera images with illumination and distance variations. The approaches used in this paper consist of Eigenface, Fisherface, and Icaface which are the most representative recognition techniques frequently used in conjunction with face recognition. These approaches are based on a popular unsupervised and supervised statistical technique that supports finding useful image representations, respectively. Thus we focus on the performance comparison from robot camera images with unwanted variations. The comprehensive experiments are completed for a databases with illumination and distance variations.

  • PDF