• Title/Summary/Keyword: Camera head

Search Result 285, Processing Time 0.027 seconds

An Efficient Camera Calibration Method for Head Pose Tracking (머리의 자세를 추적하기 위한 효율적인 카메라 보정 방법에 관한 연구)

  • Park, Gyeong-Su;Im, Chang-Ju;Lee, Gyeong-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.77-90
    • /
    • 2000
  • The aim of this study is to develop and evaluate an efficient camera calibration method for vision-based head tracking. Tracking head movements is important in the design of an eye-controlled human/computer interface. A vision-based head tracking system was proposed to allow the user's head movements in the design of the eye-controlled human/computer interface. We proposed an efficient camera calibration method to track the 3D position and orientation of the user's head accurately. We also evaluated the performance of the proposed method. The experimental error analysis results showed that the proposed method can provide more accurate and stable pose (i.e. position and orientation) of the camera than the conventional direct linear transformation method which has been used in camera calibration. The results of this study can be applied to the tracking head movements related to the eye-controlled human/computer interface and the virtual reality technology.

  • PDF

Head tracking system using image processing (영상처리를 이용한 머리의 움직임 추적 시스템)

  • 박경수;임창주;반영환;장필식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • This paper is concerned with the development and evaluation of the camera calibration method for a real-time head tracking system. Tracking of head movements is important in the design of an eye-controlled human/computer interface and the area of virtual environment. We proposed a video-based head tracking system. A camera was mounted on the subject's head and it took the front view containing eight 3-dimensional reference points(passive retr0-reflecting markers) fixed at the known position(computer monitor). The reference points were captured by image processing board. These points were used to calculate the position (3-dimensional) and orientation of the camera. A suitable camera calibration method for providing accurate extrinsic camera parameters was proposed. The method has three steps. In the first step, the image center was calibrated using the method of varying focal length. In the second step, the focal length and the scale factor were calibrated from the Direct Linear Transformation (DLT) matrix obtained from the known position and orientation of the camera. In the third step, the position and orientation of the camera was calculated from the DLT matrix, using the calibrated intrinsic camera parameters. Experimental results showed that the average error of camera positions (3- dimensional) is about $0.53^{\circ}C$, the angular errors of camera orientations are less than $0.55^{\circ}C$and the data aquisition rate is about 10Hz. The results of this study can be applied to the tracking of head movements related to the eye-controlled human/computer interface and the virtual environment.

  • PDF

Head Pose Estimation Based on Perspective Projection Using PTZ Camera (원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정)

  • Kim, Jin Suh;Lee, Gyung Ju;Kim, Gye Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.267-274
    • /
    • 2018
  • This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

Omnidirectional Camera-based Image Rendering Synchronization System Using Head Mounted Display (헤드마운티드 디스플레이를 활용한 전방위 카메라 기반 영상 렌더링 동기화 시스템)

  • Lee, Seungjoon;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • This paper proposes a novel method for the omnidirectional camera-based image rendering synchronization system using head mounted display. There are two main processes in the proposed system. The first one is rendering 360-degree images which are remotely photographed to head mounted display. This method is based on transmission control protocol/internet protocol(TCP/IP), and the sequential images are rapidly captured and transmitted to the server using TCP/IP protocol with the byte array data format. Then, the server collects the byte array data, and make them into images. Finally, the observer can see them while wearing head mounted display. The second process is displaying the specific region by detecting the user's head rotation. After extracting the user's head Euler angles from head mounted display's inertial measurement units sensor, the proposed system display the region based on these angles. In the experimental results, rendering the original image at the same resolution in a given network environment causes loss of frame rate, and rendering at the same frame rate results in loss of resolution. Therefore, it is necessary to select optimal parameters considering environmental requirements.

Tele-presence System using Homography-based Camera Tracking Method (호모그래피기반의 카메라 추적기술을 이용한 텔레프레즌스 시스템)

  • Kim, Tae-Hyub;Choi, Yoon-Seok;Nam, Bo-Dam;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.27-33
    • /
    • 2012
  • Tele-presence and tele-operation techniques are used to build up an immersive scene and control environment for the distant user. This paper presents a novel tele-presence system using the camera tracking based on planar homography. In the first step, the user wears the HMD(head mounted display) with the camera and his/her head motion is estimated. From the panoramic image by the omni-directional camera mounted on the mobile robot, a viewing image by the user is generated and displayed through HMD. The homography of 3D plane with markers is used to obtain the head motion of the user. For the performance evaluation, the camera tracking results by ARToolkit and the homography based method are compared with the really measured positions of the camera.

Head Position Detection Using Omnidirectional Camera (전 방향 카메라 영상에서 사람의 얼굴 위치검출 방법)

  • Bae, Kwang-Hyuk;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.283-284
    • /
    • 2007
  • This paper proposes a method of real-time segmentation of moving region and detection of head position in a single omnidrectional camera Segmentation of moving region used background modeling method by a mixture of Gaussian(MOG) and shadow detection method. Circular constraint was proposed for detecting head position.

  • PDF

The Study on the Radiation-Proof Video Camera system Remote Module of the Tube type (촬상관타입의 원격모듈화 내방사선 카메라시스템 연구)

  • Baek, Dong-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • The CCD camera is easily deteriorated by radiation, and an integrated camera using an image pickup tube is used in a high radiation area. We implemented a radiation camera system which is divided into a camera head using radiation-resistant electronic components and a remote control using weak radiation-resistant electronic components such as TR, IC, etc. According to the experimental results, the first damage of the electronic parts was IC for horizontal and vertical sync generation, and it was confirmed that if the radiation of $2{\times}10^5{\sim}10^6rad$ is accumulated, the normal function is lost. In addition, the signal transmission cable for remoteization has added an input/output buffer circuit and reduced the closed loop area of the shield and the cable to eliminate signal loss correction and noise. Therefore, it is expected that the maintenance cost will be greatly reduced and practical because only the camera head part can be used instead of replacing the entire system.

Compensation for Fast Mead Movements on Non-intrusive Eye Gaze Tracking System Using Kalman Filter (Kalman 필터를 이용한 비접촉식 응시점 추정 시스템에서의 빠른 머리 이동의 보정)

  • Kim, Soo-Chan;Yoo, Jae-Ha;Nam, Ki-Chang;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.33-35
    • /
    • 2005
  • We propose an eye gaze tracking system under natural head movements. The system consists of one CCD camera and two front-surface mirrors. The mirrors rotate to follow head movements in order to keep the eye within the view of the camera. However, the mirror controller cannot guarantee the fast head movements, because the frame rate is generally 30Hz. To overcome this problem, we applied Kalman predictor to estimate next eye position from the current eye image. In the results, our system allows the subjects head to move 50cm horizontally and 40cm vertically, with the speed about 10cm/sec and 6cm/sec, respectively. And spatial gaze resolutions are about 4.5 degree and 4.5 degree, respectively, and the gaze estimation accuracy is 92% under natural head movements.

  • PDF

A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display (HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발)

  • Kim, Jaeseung;Jeong, Jong Min;Kim, Han Sol;Hwang, Nam Eung;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

3D Head Modeling using Depth Sensor

  • Song, Eungyeol;Choi, Jaesung;Jeon, Taejae;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2015
  • Purpose We conducted a study on the reconstruction of the head's shape in 3D using the ToF depth sensor. A time-of-flight camera (ToF camera) is a range imaging camera system that resolves distance based on the known speed of light, measuring the time-of-flight of a light signal between the camera and the subject for each point of the image. The above method is the safest way of measuring the head shape of plagiocephaly patients in 3D. The texture, appearance and size of the head were reconstructed from the measured data and we used the SDF method for a precise reconstruction. Materials and Methods To generate a precise model, mesh was generated by using Marching cube and SDF. Results The ground truth was determined by measuring 10 people of experiment participants for 3 times repetitively and the created 3D model of the same part from this experiment was measured as well. Measurement of actual head circumference and the reconstructed model were made according to the layer 3 standard and measurement errors were also calculated. As a result, we were able to gain exact results with an average error of 0.9 cm, standard deviation of 0.9, min: 0.2 and max: 1.4. Conclusion The suggested method was able to complete the 3D model by minimizing errors. This model is very effective in terms of quantitative and objective evaluation. However, measurement range somewhat lacks 3D information for the manufacture of protective helmets, as measurements were made according to the layer 3 standard. As a result, measurement range will need to be widened to facilitate production of more precise and perfectively protective helmets by conducting scans on all head circumferences in the future.