• 제목/요약/키워드: Camera constant

검색결과 180건 처리시간 0.067초

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

관박쥐(Rhinolophus ferrumequinum)의 먹이포획 과정에 대한 행동 및 반향정위 변화 (Variation in Echolocation and Prey-capture Behavior of Rhinolophus ferrumequinum during Foraging Flight)

  • 정철운;김성철;전영신;한상훈
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.779-788
    • /
    • 2017
  • In this study, we analyzed the changes in the echolocation and prey-capture behavior of the horseshoe bat Rhinolophus ferrumequinum from search phase to capture time. The experiment was conducted in an indoor free-flight room fitted with an ultra-high-speed camera. We found that the bats searched for food while hanging from a structure, and capturing was carried out using the flight membrane. In addition, it was confirmed that the mouth and uropatagium were continuously used in tandem during the capturing process. Furthermore, using Constant Frequency (CF), we confirmed that the prey catching method reflected the wing morphology and echolocation pattern of R. ferrumequinum. The echolocation analysis revealed that the pulse duration, pulse interval, peak frequency, start-FM-bandwidth, and CF duration decreased as the search phase approached the terminal phase. Detailed analysis of echolocation pulse showed that the end-FM bandwidth, which increases as it gets nearer to the capture time of prey, was closely related to the accurate grasp of the location of an insect. At the final moment of prey capture, the passive listening that stopped the divergence of the echolocation was identified; this was determined to be the process of minimizing the interruption from the echo of the echolocation call emitted from the bat itself and sound waves emitted from the prey.

정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구 (Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions)

  • 임영찬;서현규
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.389-395
    • /
    • 2017
  • 본 연구는 정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 정보를 제공하기 위해 수행하였다. 이를 위해 동일한 분위기 압력($P_{amb}$) 1.0 atm과 산소 농도($O_2$) 21%, 질소 농도($N_2$) 79% 조건에서 초기 액적 직경($d_0$) 변화에 따른 Octane 액적의 매연 생성 특성 실험 결과를 제시하였다. Octane 액적 연소 가시화는 초고속 카메라를 사용하여 촬영하였고, 분위기 조건은 제어 시스템에 의해 동일한 조건을 유지하였다. Octane 액적 연소 결과, 매연 생성량은 동일한 분위기 조건에서 초기 액적 직경 변화의 영향이 크게 나타나지 않았다. 또한, 매연 체적 분율 최댓값($f_{vmax}$)은 $135^{\circ}{\sim}315^{\circ}$ 측정 방향에서 높은 결과를 보였다. 이는 액적 점화 이후 Igniter의 이동 과정에서 생성된 Soot-tail로 인해 매연 체적분율 결과가 증가된 것으로 나타났다.

Controlling robot by image-based visual servoing with stereo cameras

  • Fan, Jun-Min;Won, Sang-Chul
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.229-232
    • /
    • 2005
  • In this paper, an image-based "approach-align -grasp" visual servo control design is proposed for the problem of object grasping, which is based on the binocular stand-alone system. The basic idea consists of considering a vision system as a specific sensor dedicated a task and included in a control servo loop, and we perform automatic grasping follows the classical approach of splitting the task into preparation and execution stages. During the execution stage, once the image-based control modeling is established, the control task can be performed automatically. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories by using the Jacobian matrix, which is proved by the Lyapunov stability theory. And we also stress the importance of projective invariant object/gripper alignment. The alignment between two solids in 3-D projective space can be represented with view-invariant, more precisely; it can be easily mapped into an image set-point without any knowledge about the camera parameters. The main feature of this method is that the accuracy associated with the task to be performed is not affected by discrepancies between the Euclidean setups at preparation and at task execution stages. Then according to the projective alignment, the set point can be computed. The robot gripper will move to the desired position with the image-based control law. In this paper we adopt a constant Jacobian online. Such method describe herein integrate vision system, robotics and automatic control to achieve its goal, it overcomes disadvantages of discrepancies between the different Euclidean setups and proposes control law in binocular-stand vision case. The experimental simulation shows that such image-based approach is effective in performing the precise alignment between the robot end-effector and the object.

  • PDF

박피 마늘의 품위판정 기술개발에 관한 기초연구(I) -영상식 마늘 선별기용 반전장치 개발- (Basic Study on Quality Evaluation Technique for Peeled Garlics(I) -Rotation sytem for vision-based garlic sorter-)

  • 이종환;이성범;안청운
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.271-278
    • /
    • 2001
  • Many workers in the garlic peeling factory are separating the sound peeled garlics from the unpeeled and defective ones in a manual way. In order to reduce the seasonal labor requirement and operating cost, the mechanized garlic sorting system such as the vision-based garlic sorter should be developed. This study was conducted as one of basic studies on developing quality evaluation technique for peeled garlics, especially to developed the system for acquiring the whole surface images of garlics with a CCD camera. The following results were obtained from this study. 1. The belt-type garlic rotation system was devised to apply for the vision-based garlic sorter and was tested to decide the criteria of design and optimum conveying speed. 2. To evaluate the performance of the developed garlic rotation system, feeding rate and rotating rate were measured under the conditions of four experimental factors such as the inclined angle of rotating belt, the inclined angle of feeding belt, the height of plate arrays on feeding belt and the conveying speed of belts. And the capacity of the system according to mixture ratios of peeled garlics and unpeeled garlics was analyzed as a feasibility test. 3. For the inclined angle of rotating belt 20°and height of plate array on feeding belt 22㎜, the maximum rotating rate for garlic samples including unpeeled ones was 81.1% at the conveying speed of 4.2 garlic/sec. And under these condition, the maximum feeding rate was 85% at the inclined angle of feeding belt 6.5°. 4. The capacity of the developed garlic rotation system was almost constant regardless of mixture ratio of peeled garlics and unpeeled garlics and its range was 2.95∼3.92 garlic/sec. At the conveying speed of 4.2 garlic/sec, the capacity of the garlic rotation system was calculated ad 58∼64 kg/hr. 5. To improve performance of the garlic rotation system, it is recommended to develop a device to slide garlics into feeding belt.

  • PDF

머신비전을 이용한 업쇼버 로드의 표면검사 시스템 개발 (Development of Inspection System for Surface of a Shock Absorber Rod using Machine vision)

  • 김성진;이성철
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3416-3422
    • /
    • 2014
  • 쇼크 업쇼바의 로드는 피스톤부 중심에 위치하여 왕복운동을 담당하는 부분으로 표면의 불량(찍힘)이 있을 경우 감쇠력에 대한 차이로 제품 성능을 제대로 발휘하는데 문제 발생의 요인이 되고 있다. 로드표면은 열처리 상태로 표면 광택으로 인하여 쉽게 불량이 표시되지 않으며, 작업자가 육안으로 로드의 이물질 및 찍힘, 기포 검사를 진행함으로써 눈의 피로도가 높아지고, 작업자 육안에 의존하기 때문에 제품의 검사 품질이 일정하지 않다. 본 연구에서는 제품의 원통 형상을 고려하여 라인스캔카메라를 이용한 머신비전 영상처리 기법으로 0.3mm이상의 표면의 불량을 검출하고, 검사단계에서 발생할 수 있는 표면 불량을 최소화하기 위한 전 공정 자동이송 및 양불 제품의 혼입을 방지하는 자동검사 시스템 개발에 대한 연구를 수행하였다. 표면검사 시스템 개발로 작업자의 육안 검사에 의존하고 있던 쇼크업쇼버 로드의 표면에 대한 정밀 검사시스템 구축으로 품질검사 기준을 확보하고 표준화된 검사로 신뢰도가 향상되었다.

히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘 (An Efficient Vehicle Image Compensation Algorithm based on Histogram Equalization)

  • 홍성일;인치호
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2192-2200
    • /
    • 2015
  • 본 논문에서는 히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘을 제안한다. 제안된 차량용 영상보정 알고리즘은 움직임 추정 및 움직임 보상을 통해 차량용 영상의 흔들림을 제거하였다. 그리고 영상을 보정하기 위해 영상을 일정 영역으로 분할하여 각각의 서브 영상에서 픽셀 값의 히스토그램을 계산하였다. 또한, 기울기를 조절하여 영상을 개선하였다. 제안된 알고리즘은 IP에 적용하여 성능 및 시간, 영상의 차이점을 평가하고, 차량용 카메라 영상의 흔들림 제거와 영상 개선을 확인하였다. 본 논문에서 제안된 차량용 영상 보정 알고리즘은 기존 차량 영상 안정화 기술과 비교하였을 때, 차량용 영상에 대한 흔들림 제거는 메모리를 사용하지 않고 실시간 처리를 했기 때문에 효율성을 입증하였다. 그리고 블록 정합을 통한 연산으로 계산 시간 감소 효과를 얻었고, 노이즈가 가장 적고 영상의 자연스러움이 더 뛰어난 복원 결과를 얻을 수 있었다.

복잡한 도시장면의 고속 렌더링을 위한 기여도 컬링 기법 (A Contribution Culling Method for Fast Rendering of Complex Urban Scenes)

  • 이범종;박종승
    • 한국게임학회 논문지
    • /
    • 제7권1호
    • /
    • pp.43-52
    • /
    • 2007
  • 본 논문은 복잡하고 거대한 도시장면의 빠른 렌더링을 위한 기여도 컬링에 대한 새로운 방법을 제안한다. 시각 절두체 컬링 기술은 복잡한 장면의 빠른 렌더링에 사용된다. LOD를 지원하기 위해 영상 영역을 분할하고 가중치 쿼드트리를 생성한다. 현재 카메라 위치에서 보이는 객체들만 현재 쿼드트리의 요소가 되고 가중치는 쿼드트리의 각 객체에 할당된다. 가중치는 투사된 객체의 영상 영역에 비례하기 때문에 카메라로부터 먼 거리에 있는 큰 구조물들은 가까운 거리에 있는 작은 구조물들보다 컬링될 확률이 적다. 렌더링 시간은 보이는 객체들의 수에 독립적으로 거의 일정하다. 제안된 방법을 현재 개발 중인 새로운 대도시 구역에 적용했다. 제안된 방법은 기존의 방법과 같은 렌더링 질을 보장하며 다각형의 수를 약 9% 감소시킴을 확인하였다. 제안된 렌더링 방법은 복잡하고 거대한 장면의 고품질 실간 렌더링을 위한 응용 시스템에 효과적으로 사용될 수 있음을 확인하였다.

  • PDF

Pressure Sensitive Paint의 성능비교 및 경사충돌분류의 압력장 측정 (Performance Comparison of Pressure Sensitive Paint and Pressure Field Measurement of Oblique Impinging Jet)

  • 이상익;이상준
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1031-1038
    • /
    • 2002
  • The pressure sensitive paint (PSP) has recently received a considerable attention in the fields of aerodynamics and fluid mechanics as a new revolutionary optical technique to measure pressure fields on a body surface. In this study, the feasibility and effectiveness of the PSP pressure field measurement technique have been investigated experimentally. Seven different PSP formulations including two porphyrins(PtOEP and PtTFPP) and four polymers(Polystyrene, cellulous acetate butyrate, GP-197 and Silicon-708) were tested to check the performance and characteristics of each combination. The static calibration of each PSP formulation was carried out in a constant-pressure chamber. The PSP technique was applied to an oblique impinging jet flow to measure variation of pressure field on the impinging plate at on oblique jet angle of ${\theta}=60^{\circ}$. Pressure field images were captured by an 12bit intensified CCD(ICCD, $1K{\times}1K$)camera. As a result, the dynamic response of PSP depends on the oxygen permeability of polymer and the photochemical interaction between luminophore and polymer as well as the reaction of luminophore itself. The reaction of luminophore was changed by employing different polymers. In conclusion, Among 7 PSP formulation tested, the combination of PtTFPP and cellulous acetate butyrate show the best performance. In addition, the detail pressure field of an oblique high-speed impinging jet was measured effectively using the PSP technique.

직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구 (An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI)

  • 박기영;강석호;김인구;임철수;김재만;조용석;이성욱
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.