• Title/Summary/Keyword: Camera constant

Search Result 180, Processing Time 0.027 seconds

Study on the characteristics During Saturated Pool Nucleate Boiling of Refrigennt Binary Mixtures (냉매 이성분 혼합물의 포화 풀핵비등 특성에 관한 연구)

  • Kim Jeong Bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.643-652
    • /
    • 2005
  • Saturated nucleate pool boiling experiments for binary mixtures, which are consisted of refrigerant R11 and R113, were performed with constant wall temperature condition. Results for binary mixtures were also compared with pure fluids. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant temperature of the heating surface and to obtain heat flow rate measurements with high temporal and spatial resolutions. Bubble growth images were captured using a high speed CCD camera synchronized with the heat flow rate measurements. The departure time for binary mixtures was longer than that for pure fluids, and binary mixtures had a higher onset of nucleate boiling (ONB) temperature than pure fluids. In the asymptotic growth region, the bubble growth rate was proportional to a value between $t^{\frac{1}{6}}$ and $t^{\frac{1}{4}}$. The bubble growth behavior was analyzed to permit comparisons with binary mixtures and pure fluids at the same scale using dimensionless parameters. There was no discernable difference in the bubble growth behavior between binary mixtures and pure fluids for a given ONB temperature. And the departure radius and time were well predicted within a ${\pm}30{\%}$ error. The minimum heat transfer coefficient of binary mixtures occurred near the maximum ${\mid}y-x{\mid}$ value, and the average required heat flux during bubble growth did not depend on the mass fraction of R11 as more volatile component in binary mixtures. Finally, the results showed that for binary mixtures, a higher ONB temperature had the greatest effect on reducing the heat transfer coefficient.

Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications (초음파센서를 이용한 변량제어 스프레이어)

  • Jeon, Hong-Young;Zhu, Heping
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Edge-preserving demosaicing method for digital cameras with Bayer-like W-RGB color filter array

  • Park, Jongjoo;Chong, Jongwha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1011-1025
    • /
    • 2014
  • A demosaicing method for a Bayer-like W-RGB color filter array (CFA) is proposed. When reproducing images from a W-RGB CFA, conventional color separation methods for W-RGB CFA are likely to cause blurring near the edges due to rough averaging using a color ratio of neighboring pixels. Moreover, these methods cannot be applied to real-life digital cameras with W-RGB CFA because the methods were proposed under an ideal situation, W=R+G+B, not a real-life situation, $W{\neq}R+G+B$. To improve edge performance, we propose a method of constant color difference assumption with inversed weight, which uses information from all edge directions for interpolating all missing color channels. The proposed method calculates the correlation between W, R, G, and B to enable its application to real-life digital cameras with W-RGB CFA. Simulations were performed to evaluate the proposed method using images captured from a real-life digital camera with W-RGB CFA. Simulation results shows that we can demosaic by using the proposed algorithm compared with the conventional one in about +34.79% SNR, +11.43% PSNR, +1.54% SSIM and 14.02% S-CIELAB error. Thus, the proposed method demosaics better than the conventional methods.

An Experimental Study on Flame Propagation along Non-premixed Vortex Tube (비예혼합 선형 와환에서의 화염 전파 특성에 관한 실험적 연구)

  • Yang, Seung-Yeon;Roh, Yoon-Jong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.864-870
    • /
    • 2001
  • Flame propagation along vortex tube was experimentally investigated. The vortex tube was generated by the ejection of propane from a nozzle through a single stroke motion of a speaker and the ignition was induced from a single pulse laser. Non-reactive flow fields were visualized using shadow technique. From these images, vortex ring size and translational velocity were measured in order to determine the ignition time and position. Flame structure and flame speed were measured using high speed CCD camera. Flame speed was accelerated during the initial stage of flame kernel growth, and reached near constant value during steady propagation period. Near the completion of propagation, flame speed was decelerated and then extinguished. Flame speed along the non-premixed vortex tube was found to be linearly proportional to circulation, which was similar to that of the flame propagation along premixed vortex ring. Ignition position minimally affects the propagation characteristics. These imply that flame is propagating along the maximum speed locus expected to be along stoichiometric contour and also support the existence of tribrachial flames.

  • PDF

A study on development of automatic welding system for corrugated membranes of the LNG tank (LNG 탱크의 주름진 내벽박판용 자동용접시스템의 개발에 관한 연구)

  • 유제용;유원상;나석주;강계형;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 1996
  • Development of an automatic TIG welding system incorporating a vision sensor and torch control mechanism leads to an improved welding quality and greater production efficiency. The automatic welding system should be greatly restricted in its size and weight for the LNG(Liquefied Natural Gas) storage tank and also provide a unique torch rotating mechanism which keeps the torch tip in the constant position while the angle is changed continuously to maintain the welding torch substantially perpendicular to the weld line. The developed system is driven by two translation axes X, Z and one rotational axis. A moving line window method is adopted to the image recognition of the corrugated membranes with specular reflection. This method decides original laser stripe patterns in image which is affected by multi-reflection. A self-teaching algorithm, which guides the automatic welding machine with the information provided by the CCD camera without any previous learning of a reference trajectory, was developed for tracking the corrugated membrane of the LNG tank along the weld line.

  • PDF

Experimental Study on Spray Characteristics of Gasoline Direct Injection Multi-hole Injector (가솔린 직접분사용 다공형 인젝터의 분무특성에 관한 실험적 연구)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2054-2060
    • /
    • 2011
  • The purpose of this paper is to investigate spray characteristics of GDI injector that is economic and environment-friendly. Injector characteristics such as penetration length, spray angle and mixture formation were measured using experimental visualization technique. Especially, it has been analyzed that the influences of ambient pressure and injection pressure on penetration length and spray angle. To visualize the spray, a constant volume combustion chamber and fuel supply system have been manufactured. A high-speed camera and LED light source have been applied to obtain spray images. The experimental and visualization result shows that the penetration length is increased as decreasing ambient pressure and/or increasing injection pressure. Also, ambient pressure and injection pressure have minor effect on the spray angle variation.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle - (접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 -)

  • 이찬용;김철환;최경민;박종열;권오철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.