• Title/Summary/Keyword: Camera Performance

Search Result 1,814, Processing Time 0.03 seconds

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

Development of an Infrared Imaging-Based Illegal Camera Detection Sensor Module in Android Environments (안드로이드 환경에서의 적외선 영상 기반 불법 촬영 카메라 탐지 센서 모듈 개발)

  • Kim, Moonnyeon;Lee, Hyungman;Hong, Sungmin;Kim, Sungyoung
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Crimes related to illegal cameras are steadily increasing and causing social problems. Owing to the development of camera technology, the miniaturization and high performance of illegal cameras have caused anxiety among many people. This study is for detecting hidden cameras effectively such that they could not be easily detected by human eyes. An image sensor-based module with 940 nm wavelength infrared detection technology was developed, and an image processing algorithm was developed to selectively detect illegal cameras. Based on the Android smartphone environment, image processing technology was applied to an image acquired from an infrared camera, and a detection sensor module that is less sensitive to ambient brightness noise was studied. Experiments and optimization studies were conducted according to the Gaussian blur size, adaptive threshold size, and detection distance. The performance of the infrared image-based illegal camera detection sensor module was excellent. This is expected to contribute to the prevention of crimes related to illegal cameras.

Performance Criterion-based Polynomial Calibration Model for Laser Scan Camera (레이저 스캔 카메라 보정을 위한 성능지수기반 다항식 모델)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Kim, Su-Dae;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.555-563
    • /
    • 2011
  • The goal of image calibration is to find a relation between image and world coordinates. Conventional image calibration uses physical camera model that is able to reflect camera's optical properties between image and world coordinates. In this paper, we try to calibrate images distortion using performance criterion-based polynomial model which assumes that the relation between image and world coordinates can be identified by polynomial equation and its order and parameters are able to be estimated with image and object coordinate values and performance criterion. In order to overcome existing limitations of the conventional image calibration model, namely, over-fitting feature, the performance criterion-based polynomial model is proposed. The efficiency of proposed method can be verified with 2D images that were taken by laser scan camera.

Long-Distance Plume Detection Simulation for a New MWIR Camera (장거리 화염 탐지용 적외선 카메라 성능 광선추적 수치모사)

  • Yoon, Jeeyeon;Ryu, Dongok;Kim, Sangmin;Seong, Sehyun;Yoon, Woongsup;Kim, Jieun;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.245-253
    • /
    • 2014
  • We report a realistic field-performance simulation for a new MWIR camera. It is designed for early detection of missile plumes over a distance range of a few hundred kilometers. Both imaging and radiometric performance of the camera are studied by using real-scale integrated ray tracing, including targets, atmosphere, and background scene models. The simulation results demonstrate that the camera would satisfy the imaging and radiometric performance requirements for field operation.

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

Development of Measuring System for Camera Lens Resolution Based on the MTF Performance (MTF 측정에 의한 카메라 렌즈 해상력 검사 시스템 개발)

  • 박희재;신호승;노영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.629-634
    • /
    • 2000
  • This System is developed for the estimation of the Camera Lens Resolution. Signal data proportional to light intensity is obtained and sampled from the 2D CCD. Based on the measured signal. the MTF charateristcs of a camera lens are measured. We could measure the sagittal and tangential MTF in the on and off-axis at the same time. The automatic measurig methods for optimal image plane, magnification, and best marginal direction of test lens are presented.

  • PDF

Feature based Object Tracking from an Active Camera (능동카메라 환경에서의 특징기반의 이동물체 추적)

  • 오종안;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.141-144
    • /
    • 2002
  • This paper describes a new feature based tracking system that can track moving objects with a pan-tilt camera. We extract corner features of the scene and tracks the features using filtering, The global motion energy caused by camera movement is eliminated by finding the maximal matching position between consecutive frames using Pyramidal template matching. The region of moving object is segmented by clustering the motion trajectories and command the pan-tilt controller to follow the object such that the object will always lie at the center of the camera. The proposed system has demonstrated good performance for several video sequences.

  • PDF

Evaluation of Vibration Control Performance of Camera Mount System for UAV (무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가)

  • Oh, Jong-Suk;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.407-412
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle (UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

  • PDF

A Technique for Measuring Vibration Displacement Using Camera Image (카메라 영상을 이용한 진동변위 측정)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.789-796
    • /
    • 2013
  • Vibration measurements using image processing have been studied by many researchers as it can remotely measure vibration displacements at multiple points simultaneously. It is difficult, however, to obtain accurate displacement from the measured image signals because the resolution of image data is dependent on camera performance and normally lower than that of vibration transducer directly measured. This paper suggests the enhanced technique for vibration displacement measurement by applying the expected value of edge probability distribution to the varying pixel points in the image. The method can both increase the resolution limit of camera image and decrease the measurement errors. The working performance of the proposed technique is verified applying to the vibration measurement of a rotating machine.

Bare Glass Inspection System using Line Scan Camera

  • Baek, Gyeoung-Hun;Cho, Seog-Bin;Jung, Sung-Yoon;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1565-1567
    • /
    • 2004
  • Various defects are found in FPD (Flat Panel Display) manufacturing process. So detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the bare glass inspection system for the FPD which is the early process inspection system in the FPD manufacturing process is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP (Digital signal Processor), FIFO (First in First out), FPGA (Field Programmable Gate Array) and the Data Management and System Control part are implemented using ARM (Advanced RISC Machine) processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made.

  • PDF