• 제목/요약/키워드: Camera Angle

검색결과 777건 처리시간 0.03초

무인 스피드스프레이어의 개발 (II) -화상처리를 이용한 주행방향 제어 알고리즘- (Development of Unmaned Speedsprayer (II) - Guidance Control Using Image Processing -)

  • 장익주;김태한;엄순형
    • Journal of Biosystems Engineering
    • /
    • 제23권3호
    • /
    • pp.291-304
    • /
    • 1998
  • A control algorithm fir the unmanned vehicles was developed using image information received through a CCD camera that acquires more powerful information over the wide range of wave-length comparing with other sensors and was applied to a speed-sprayer. The algorithm consisted of straight mode for passing along with middle of two tree-rows and turning mode for changing from a row to another row. In case of turning mode, two marks of colored papers were employed to indicate turning point and to decide turning direction for various orchard situations. The method of analysis and image would be differed according to camera's tilt-angle and position that is set on the speed-sprayer. Hence, it analyzed the point of difference by making camera's up and downward tilt-angle.

  • PDF

퍼지 논리를 이용한 추종 Mobile Vehicle의 지능적 Control 구현 (Intelligent Control for the Tracing Mobile Vehicle Using Fuzzy Logic)

  • 최우경;서재용;김성현;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.119-122
    • /
    • 2002
  • The paper proposed the intelligent inference method which keeps MV(Mobile vehicle) a little way off from men and makes it follow them using fuzzy controller Recognizing positions of MV and Men and distance between them was used to infer movement angle and speed of the MV with multi-ultrasonic sensor and USB camera The very important thing Is that the MV needs to obtain surrounding Information from the sensor and the camera, then It needs to represent those circumstances MV was controlled by inference from the speed and angle which are obtained from sensor and camera. Traveling simulation with a real MV was performed repeatedly to verify the usefulness of the fuzzy logic algorithm which was proposed in this paper. And a successful result of the experiment demonstrated the excellence of the fuzzy logic controller.

  • PDF

Geometric Assessment and Correction of SPOT5 Imagery

  • Kwoh, Leong Keong;Xiong,, Zhen;Shi, Fusheng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.286-288
    • /
    • 2003
  • In this paper, we present our implementation of the direct camera model (image to ground) for SPOT5 and use it to assess the geometric accuracy of SPOT5 imagery. Our assessment confirms the location accuracy of SPOT5 imagery (without use of GCPs) is less than 50m. We further introduce a few attitude parameters to refine the camera model with GCPs. The model is applied to two SPOT5 supermode images, one near vertical, incidence angle of 3 degrees, and one far oblique, incidence angle of 27 degrees. The results show that accuracy (rms of check points) of about one pixel (2.5m) can be achieved with about 4 GCPs by using only 3 parameters to correct the yaw, pitch and roll of the satellite.

  • PDF

다층퍼셉트론의 정합 근사화에 의한 2차원 영상의 카메라 오차보정 (A 2-D Image Camera Calibration using a Mapping Approximation of Multi-Layer Perceptrons)

  • 이문규;이정화
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.487-493
    • /
    • 1998
  • Camera calibration is the process of determining the coordinate relationship between a camera image and its real world space. Accurate calibration of a camera is necessary for the applications that involve quantitative measurement of camera images. However, if the camera plane is parallel or near parallel to the calibration board on which 2 dimensional objects are defined(this is called "ill-conditioned"), existing solution procedures are not well applied. In this paper, we propose a neural network-based approach to camera calibration for 2D images formed by a mono-camera or a pair of cameras. Multi-layer perceptrons are developed to transform the coordinates of each image point to the world coordinates. The validity of the approach is tested with data points which cover the whole 2D space concerned. Experimental results for both mono-camera and stereo-camera cases indicate that the proposed approach is comparable to Tsai's method[8]. Especially for the stereo camera case, the approach works better than the Tsai's method as the angle between the camera optical axis and the Z-axis increases. Therefore, we believe the approach could be an alternative solution procedure for the ill -conditioned camera calibration.libration.

  • PDF

신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어 (Lateral Control of Vision-Based Autonomous Vehicle using Neural Network)

  • 김영주;이경백;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

A Study on Estimation of Liquid Leakage Using Wide Angle Camera Based Angled of Arrival Algorithm in Bio Plant

  • Shin, Jaekwon;Mariappan, Vinayagam;Woo, Deokgun;Lee, Junghoon;Lee, Jisung;Kim, Minsoo;Kim, Jintae
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2018
  • In addition to the instability of energy import costs caused by the depletion of petroleum resources, which is a representative energy resource, and the strengthening of various regulations such as the convention on climate change, the plant for bio energy production, which is being watched as the next generation energy, and became subject of various complaints. In order to solve this problem, the bio-plant is underground and the ground is parked, making the convenience and accessibility of citizens more and more accessible. In this situation, the development of bioenergy production technology also increases the risk factor in bioenergy production process. Accordingly this paper explains method about apply the wide angle camera based AOA algorithm to the bio plant to prevent the accidents from spreading due to the lack of facilities and safety devices and the aging of the facilities and suggests a technique that can quickly identify the location and direction when it occurs.

A method for image processing by use of inertial data of camera

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.221-225
    • /
    • 1998
  • This paper is to present a method for recognizing an image of a tracking object by processing the image from a camera, whose attitude is controlled in inertial space with inertial co-ordinate system. In order to recognize an object, a pseudo-random M-array is attached on the object and it is observed by the camera which is controlled on inertial coordinate basis by inertial stabilization unit. When the attitude of the camera is changed, the observed image of M-array is transformed by use of affine transformation to the image in inertial coordinate system. Taking the cross-correlation function between the affine-transformed image and the original image, we can recognize the object. As parameters of the attitude of the camera, we used the azimuth angle of camera, which is de-fected by gyroscope of an inertial sensor, and elevation an91e of camera which is calculated from the gravitational acceleration detected by servo accelerometer.

  • PDF

비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구 (A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System)

  • 이진우;이영진;이권순
    • 한국항만학회지
    • /
    • 제14권3호
    • /
    • pp.303-312
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

특징점 추출을 통한 HMD 회전각측정 알고리즘 개발 (Development of a rotation angle estimation algorithm of HMD using feature points extraction)

  • 노영식;김철희;윤원준;윤유경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.360-362
    • /
    • 2009
  • In this paper, we studied for the real-time azimuthal measurement of HMD(Head Mounted Display) using the feature points detection to control the tele-operated vision system on the mobile robot. To give the sense of presence to the tele-operator, we used a HMD to display the remote scene, measured the rotation angle of the HMD on a real time basis, and transmitted the measured rotation angles to the mobile robot controller to synchronize the pan-tilt angles of remote camera with the HMD. In this paper, we suggest an algorithm for the real-time estimation of the HMD rotation angles using feature points extraction from pc-camera image.

  • PDF