• Title/Summary/Keyword: Camber Line Deformation

Search Result 4, Processing Time 0.016 seconds

Leveling Condition in Cut-To-Length Lines to Produce Low Residual Stress Flat Plate from Hot Rolled Coils (잔류응력이 낮은 평탄한 판재 제조를 위한 열연 코일 교정 조건 도출)

  • Park K.C.;Kim H.J.;Kim K.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.311-318
    • /
    • 2006
  • One of the most important quality problems in flat plate leveled from hot rolled coils in cut-to-Iength lines is bowing and cambering when they are cut in small width parts. It is verified analytically and experimentally that residual stress remained in plate is th ε source of the problem. In order to produce low residual stress flat plate from hot rolled coils, the proper conditions of leveling are studied and two things are implemented. One is proper plastic deformation area ratio to reduce residual stress within customer requirement by applying suitable plastic deformation and maintain leveling load within structural strength limit of leveler. The other is maintaining uniform plastic deformation along the width of the plate during leveling. Customer requirement for residual stress is met by applying above 70% of plastic deformation area ratio and uniform deformation along width of coil by adjusting back up rolls according to deformation analysis of work roll and back up roll assembly and leveling tests.

Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels by Deformation Analysis of Leveling Process (레벨링 공정 해석에 의한 교정 조건이 열연 고장도 강판의 잔류음력에 미치는 영향 연구)

  • Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.326-329
    • /
    • 2009
  • In order to analyze the effect of leveling conditions on residual stress evolution of hot rolled high strength steels, a numerical algorithm was developed. It was able to implement the effect of plastic fraction (intermesh) in leveling, line tension, work roll bending, and initial residual stress and curl distribution. The effect of work roll bending on residual stress and curl were studied by using the developed program. The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  • PDF

Finite Element Analysis on Effect knifes Clearance on Shear Planes in Slitting (슬리팅가공에서 전단면에 미치는 나이프 틈새의 영향에 관한 유한요소해석)

  • 한규택
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.607-612
    • /
    • 2000
  • A slitter, also called a roll slitter or rewinding machine, is a sort of machinery to cut sheet materials in rolls continuously in the longitudinal direction. Recently slitter line users have requiring higher wuality and precision in products in addition to high productivity. In this paper, on effect of clearance on shear planes in slitting of S.K.B(shrinkage Bnad) is performed by using finite element method. The results obtained are as follows: (1)Load stroke curves show decreasing maximum force when increasing the clearance. (2)Effective strain decreases when the clearance increases. (3)Deformation is concentrated along the very narrow shear band.

  • PDF

Turbine Blading Performance Evaluation Using Geometry Scanning and Flowfield Prediction Tools

  • Zachos, Pavlos K.;Pappa, Maria;Kalfas, Anestis I.;Mansour, Gabriel;Tsiafis, Ioannis;Pilidis, Pericles;Ohyama, Hiroharu;Watanabe, Eiichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.89-96
    • /
    • 2008
  • This paper investigates the effect of blade deformation, caused by manufacturing inaccuracies, on the performance of a 2-stage axial steam turbine. A high fidelity 3D coordinate Measurement Machine has been employed to obtain the exact geometrical model of the blades. A Streamline Curvature solver was used to predict the overall performance of the turbine. During the manufacturing process of the casts and of the blades themselves, several types of errors can occur which lead to a different geometry from that envisaged by the designer. The main objective of this study is to investigate the effect of those errors on the performance of a 2-stage experimental axial steam turbine. A high fidelity measurement of the actual geometry of both stator and rotor blades has been carried out, using a 3D Coordinate Measurement Machine. The cross sections of the blades obtained by the measurement were compared with those produced by the design process to evaluate the change in blade inlet/exit angles. In addition, the geometrical deviations from the initial design have been subjected to a statistical study in order to locate the nature of the error. The actual(measured) model has been used as input into a Streamline Curvature solver to evaluate its performance. Finally, a comparison with the performance plots of the original geometry has been carried out. A measurable change of efficiency as well as in the total power delivered by the turbine was found. This suggests that the accumulated error caused during the manufacturing procedure plays a significant role in the overall performance of the machine by making it less efficient by more than 1%. Reverse engineering techniques are proposed to predict and alleviate these errors leading thereby to a final design of each stage with improved performance.

  • PDF