• Title/Summary/Keyword: Cam Follower

Search Result 84, Processing Time 0.035 seconds

Study of Factor Causing Wear of a Barrel Cam in a Paper-Cup-Forming Machine by Using Multibody Dynamics Model (다물체 동역학 모델을 이용한 종이컵 성형기용 배럴캠의 마모 인자에 관한 연구)

  • Jun, Kab-Jin;Park, Tae-Won;Cheong, Kwang-Yeil;Kim, Young-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • The barrel cam, which is a type of cylindrical cam, has been widely used as a part of index drive units for automatic manufacturing machines. The axis of rotation of the barrel cam is orthogonal to the axis of rotation of the follower. The index drive rotates or dwells depending on the cam profile, while the cam rotates with a constant velocity. Continuous sliding contact between the barrel cam and the follower surfaces causes wearing of the adhesive between them. This study shows that the contact force between two sliding bodies is responsible for the wear of the barrel cam in the paper-cup-forming machine. This contact force is calculated by using the multibody dynamics model of the paper-cup-forming machine. The analytical result is validated by comparing it to the actual wear spots on the real product.

A Study on Design Approach of Inverse Cam Mechanism (Inverse Cam Mechanism 설계에 관한 연구)

  • 김도현;신중호;김종수;김상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.916-919
    • /
    • 2002
  • Cam mechanism is one of the common devices used in lots of automatic machinery. This paper introduces to an inverse cam mechanism. The inverse cam mechanism has a reverse structure as compared with common cam mechanism. For shape design of the inverse cam the approach used in this paper is an instant velocity center method that find the contact point between cam and roller at any contact time. And a computer program is developed for shape design and simulation by visual $C^{++}$ language. As the results, this paper presents two examples for the shape design of the inverse cam mechanism in order to prove the accuracy of the design procedures.

  • PDF

A Study on the Development of CAD/CAM System for High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기용 CAD/CAM 시스템 개발에 관한 연구)

  • Lim, Sang-Heon;Jung, Jong-Yun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.44-50
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. In present paper, a CAD/CAM system is developed for shape design of disk cams using relative velocity method and NC code generation using the biarc curve interpolation. And, a disk cam is successfully manufactured by the developed CAD/CAM system. Thus, it is shown that the developed CAD/CAM system can be used for high precision cam profile CNC grinding machine.

Optimum Design of Beating Cam for High Speed Rapier Loom (고속 래피어 직기용 바듸침 캠의 최적설계)

  • Kim, Jong-Su;Kim, Dae-Won
    • 연구논문집
    • /
    • s.28
    • /
    • pp.89-100
    • /
    • 1998
  • This paper deals with the design and analysis of a beating cam. The beating device of a high speed rapier loom, weaving fabric by completion of warp-weft patterns, is driven by double cam type on the same axis. As the double cam, coupled with two cams, performs the mutual conjugate motion, the double cam must be very preciously designed for smooth. For the shape design of a double cam, an instant velocity center method is proposed. This method can determine the cam profile from the contact conditions of the cam and roller follower and the velocity relationships at the instant velocity center. And the practical applicability was verified by developing “DISKCAM of a CAD program. As the results in this paper, the shapes of two cams, which are in the conjugate motion, are designed by instant velocity center method. We applied 8-order polynominals for the beating as displace¬ment curves for shape determination of double cams. The data of displacement, velocity, and acceleration of beating cam can be used adjust in accurate operation and to develope an advanced beating device.

  • PDF

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF

A Study on the Cam Profile Synthesis Method for Automotive Engines Using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상 합성법에 관한 연구)

  • Kim, D.J.;Lee, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.90-99
    • /
    • 1995
  • A numerical method is proposed to synthesize automotive cam profiles. An arbitrary acceleration profile for the cam follower motion is divided into several segments, each of them is described by a Hermite curve. A cam profile is defined by control point locations and control variables assigned to each segment. Closed form equations are derived for velocity and displacement constraints which should be satisfied for the curve to be a cam profile. Because the method is flexible and provide arbitrary local controllability, any types of cam acceleration profile can be reproduced by the method. The method is expecially useful for the design of roller type OHC valve trains which need precise local control in the cam profile design to avoid under-cutting problems.

  • PDF

The Chacteristics of Load on the Cam-Valve Mechanism for the Marine Diesel Engine (박용 디젤기관의 캠-밸브기구 하중특성)

  • 조민현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.778-784
    • /
    • 1999
  • In this study both the experimental and the analytic approach to find load characteristics on the cam-valve mechanism for matrine diesel engine were demonstrated. The experiment was per-formed with a test rig consisted of real engine components for cam-valve mechanism of overhead valve type. The 9-degree of freedom lumped mass model was developed to simulate cam-valve motion throughly. Behavior of the load acting on the cam-valve mechanism was estimated for the various cam speed. The load variation was getting deeper with the higher cam speed and the jumping of the follower was shown both in the experiment and in the simulation.

  • PDF