• Title/Summary/Keyword: Call admission control

Search Result 154, Processing Time 0.029 seconds

A Study on Threshold-based Admission Control Algorithm for Multicast Service (멀티캐스트 서비스 환경에서 역치 기반의 연결 수락 제어 방안 연구)

  • Jo Seng Kyoun;Choi Seong Gon;Lee Jong Min;Choi Jun Kyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we study a call admission control algorithm for supporting multicast service under the BcN environment where broadcasting, communication and Internet are converging to be one. It is necessary to control service requests with a certain criteria in order to guarantee QoS because the system capacity is limited. As a possible solution, we divide one multicast service into 3 classes and set up a threshold per each class to control service request. Especially, for the purpose of system benefit, we define system pay-off rate 'GAIN' with the term 'Reward' and 'Penalty' according to admit and reject service request. And we confine the range of threshold which makes GAIN to be maximized. For the performance analysis, we model the system as M/M/m/m queueing system, investigate GAIN under various conditions and show the effectiveness of the proposed algorithm.

Performance Analysis of Call Admission Control Scheme with Bandwidth Borrowing and Bandwidth Reservation in GEO based Integrated Satellite Network (GEO 기반 위성 네트워크에서의 대역폭 빌림 방법과 대역폭 예약 방법을 이용한 호 수락 제어 성능 분석)

  • Hong, Tae-Cheol;Gang, Gun-Seok;An, Do-Seop;Lee, Ho-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, we propose the bandwidth borrowing scheme which improves the performance of the cal admission control of the integrated GEO satellite networks. In general, target transmission rates of communications and streaming services are fixed, but data services do not have the target transmission rates. Therefore, we can control the transmission rates for data services flexibly according to the system loading situation. When the available bandwidth of the system is insufficient, the bandwidth borrowing scheme gives the bandwidth to request real time services by the transmission rates control of data services through packet scheduler. We make the queueing model for our system model and demonstrate the results through simulations. The simulation results show that there is a 8.7-35.2 dB gain at the total blocking probability according to the use of bandwidth borrowing scheme.

  • PDF

QoS and Multi-Class Service Provisioning with Distributed Call Admission Control in Wireless ATM Networks (무선 ATM망에서 QoS와 다중 서비스를 지원하는 분산된 호 수락 제어 알고리즘과 성능 분석)

  • Jeong, Da-Ip;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2000
  • In wireless environment, due to the limited capacity of radio channels it is not easy to guarantee QoS provisioning to mobile users. Therefore, one of the key problems to support broadband multimedia multi-services in wireless ATM networks is to study an effective call admission control(CAC). The purpose of this paper is to propose a distributed CAC scheme that guarantees multi QoS and multi-class service. Control parameters of the proposed scheme are QoS threshold and channel overload probability. With these parameter control, we show that the scheme can guarantee the requested QoS to both new and handover calls. In the scheme, channels are allocated dynamically, and QoS measurements are made in a distributed manner. We show that by providing variable data rate to calls it can effectively prohibit the QoS degradation even if there are severe fluctuations of network traffic. We compare the proposed CAC scheme to the well-known schemes such as guard band call admission control scheme. Through numerical examples and simulations, the proposed scheme is shown to improve the performance by lowering the probability of handover call dropping

  • PDF

Performance Analysis of S-SFR-based OFDMA Cellular Systems

  • Kim, Yi-Kang;Cho, Choong-Ho;Yoon, Seok-Ho;Kim, Seung-Yeon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.186-205
    • /
    • 2019
  • Intercell interference coordination (ICIC) is considered as a promising technique to increase the spectral efficiency of OFDMA cellular systems. The soft frequency reuse (SFR) and fractional frequency reuse (FFR) are representative and efficient management techniques for ICIC. Herein, to enhance the performance of the SFR scheme, we propose a call admission (CAC) scheme. In this CAC scheme, called Spectrum handoff-SFR(S-SFR), the spectrum handoff technique is applied to the user equipment (UE) located near the cell center. We derive the traffic analysis model to describe the S-SFR. In addition, a two-dimensional (2-D) Markov chain and an outage analysis are used in our analytical model. From the traffic analysis, the significant performance measures are the outage probability, call blocking probability, system throughput and resource utilization. Based on those, the outage probability and system throughput are obtained using resource utilization as an interference pattern. The analytical results are verified with computer simulation results. Finally, we compare our proposed scheme with other ICI schemes.

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

SmartCAC : Novel Distributed Connection Admission Control Framework for Heterogeneous Networks (이종 네트워크를 위한 분산처리 방식의 효율적인 호 수락 제어 구조)

  • Kim, Hyo-Eun;Kim, Won-Tae;Kang, Eun-Hyun;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.70-80
    • /
    • 2007
  • For supporting various mobile networks, this paper proposes a framework of distributed connection admission control, named SmartCAC. Especially, intelligent CAC operations are adopted in terms of interoperation between mobile nodes and mobile networks. This scheme does not need to correct information between networks. Basically vertical handover call can use guard channel that was reserved for handoff, because SmartCAC addresses the identification between vertical handover call and new call, delay and reliability as requirement of QoS for efficient connection control. The scheme also uses mobile terminal speed for network filtering. Especially an extended protocol is proposed to give different network states information to mobile nodes because there have been no ways for mobile nodes to compare the states of different networks. Sophisticated simulation study is performed in order to evaluate SmartCAC in terms of signaling cost. As a result, signaling cost of ours is up to 96% better than that of the existing scheme.

The Call Control Scheme by Variable Bandwidth and Reserved Resource u Multiple Cell Model (다중 셀 환경에서 가변대역과 자원예약에 의한 호 제어 방법)

  • Lee, Jong-Kap;Seong, Hong-Seok
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • In CDMA system, the number of mobile stations which can be served simultaneously in a base station is limited by the amount of total interference received. Considering the facts, the call admission control method using the effective bandwidth concept is employed in this paper. The bandwidth for a new call and a handoff call is allocated by considering the number of mobile station being served and dynamically assigned by taking account of the blocking rate of new calls and the dropping rate of handoff calls. Also, there is reserved resource for handoff call. We analyze the performance of system according to reserved resource by a simulation study. The more a resource reserved, the less it is the dropping rate of handoff.

The Call Control Scheme for Multiple Cells CDMA System Under Non-Uniform Traffic Distribution (비균일 부하를 가진 다중 셀 CDMA시스템에서의 호 제어 기법)

  • 이동명
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.737-743
    • /
    • 2004
  • In this paper, we propose the call control scheme that can improve the capacity of the wireless system for the non-uniform traffic load distribution and the multiple types of services in multiple cells CDMA system. The number of mobile stations that can be served simultaneously in a base station is limited by the amount of total interference received in CDMA system. Further, the average number of mobile stations in each cell may not be uniformly distributed. Considering this factors, the call admission control scheme using the effective bandwidth concept is adapted in this paper. Thus, the bandwidth for a new call can be varied dynamically for reducing the blocking rate of new calls and the dropping rate of handoff calls. The suggested call control scheme is experimented through a simulation by dynamically assigning the bandwidth to new and handoff calls. The simulation results show that the proposed call control scheme can accommodate more mobile stations than the other methods in multiple cells environment.

  • PDF

A CAC Scheme for Voice/Data DS-CDMA Systems with Prioritized Services

  • Insoo Koo;Kim, Eunchan;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.92-96
    • /
    • 2000
  • In this paper, we propose a call admission control(CAC) scheme fer the mixed voice/data DS-CDMA systems and analyze the Er-lang capacity under the proposed CAC scheme. Voice and data traffics require different system resources based oil their Quality of Service(QoS) requirements. In the proposed CAC scheme, some system resources are reserved exclusively for handoff calls to have high priority Over new calls. Additionally the queueing of both new and handoff data traffics that are not sensitive to delay is allowed. Ar a performance measure for the suggested CAC scheme. Erlang capacity is utilized. For the performance analysis, a four-dimensional Markov chain model is developed. Erlang capacity of a practical IS-95B type system depicts, and optimum values of system parameters such as the number of reservation channels and queue lengths are found with respect to Erlang capacity. Finally, it is observed that Erlang capacity is improved more than two times by properly selecting the system parameters with the proposed CAC scheme.

  • PDF

Traffic Modeling and Call Admission Control GCRA-Controlled VBR Traffic in ATM Network (ATM 망에서 UPC 파라미터로 제어된 VBR 트래픽 모델링 및 호 수락 제어)

  • 정승욱;정수환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.670-676
    • /
    • 2002
  • The object of ATM network is to the guarantee quality of service(QoS). Therefore, various of traffic management schemes have been proposed. Among these schemes, call admission control(CAC) is very important to provide real-time services and ON-OFF model, which is single source traffic model, has been used. But ON-OFF model differ from GCRA(Generic Cell Rate Algorithm) controlled traffic in ATM network. In this paper, we analyze the traffic, which is controlled as dual GCRA, and propose TWM(Three-state Worst-case Model), which is new single source traffic model. We also proposed CAC to guarantee peak-to-peak CDV(Cell Delay Variation) based on the TWM. In experiments, ON-OFF model and TWM are compared to show that TWM is superior to ON-Off model in terms of QoS guaranteeing.