• Title/Summary/Keyword: California poppy

Search Result 3, Processing Time 0.018 seconds

Biochemistry, Molecular Biology, and Metabolic Engineering of Benzylisoquinoline Alkaloid Biosynthesis

  • Peter J. Facchini;Park, Sang-Un;David A. Bird;Nailish Samanani
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2000
  • Benzylisoquinoline alkaloids are a diverse group of natural products that include many pharmacologically active compounds produced in a limited number of plant families. Despite their complexity, intensive biochemical research has extended our knowledge of the chemistry and enzymology of many important benzylisoquinoline alkaloid pathways, such as those leading to the analgesic drugs morphine and codeine, and the antibiotics sanguinarine and berberine. The use of cultured plant cells as an experimental system has facilitated the identification and characterization of more than 30 benzylisoquinoline alkaloid biosynthetic enzymes, and the molecular cloning of the genes that encode at least 8 of these enzymes. The recent expansion of biochemical and molecular technologies has creat-ed unique opportunities to dissect the mechanisms involved in the regulation of benzylisoquinoline alkaloid biosynthesis in plants. Research has suggested that product accumulation is controlled by the developmental and inducible regulation of several benzylisoquinoline alkaloid biosynthetic genes, and by the subcellular compartmentation of biosynthetic enzymes and the intracellular localization and trafficking of pathway intermediates. In this paper, we review our current understanding of the biochemistry, cell biology, and molecular regulation of benzylisoquinoline alkaloid biosynthesis in plants. We also summarize our own research activities, especially those related to the establishment of protocols for the genetic transformation of benzylisoquinoline alkaloid-producing species, and the development of metabolic engineering strategies in these plants.

  • PDF

Elicitation and In Situ Recovery of Alkaloids in Suspension Cultures of California Poppy

  • Byun, Sang-Yo;Pedersen, Henrik
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.220-226
    • /
    • 1991
  • Large and rapid increases in benzophenanthridine alkaloid production occured in suspension cultures of Eschscholtzia californica cells treated with elicitors. Response to different biotic elicitors showed that elicitors prepared from yeast extract, Collectotrichum lindemuthianum and Verticillium dahliae induced alkaloid formation. Highest alkaloid accumulation was obtained with $60\;\mu\textrm{g}$ of yeast extract elicitor per gram of fresh cell weight. In time course performance after elicitor addition, more than 40 hours were required to obtain saturated alkaloid accumulation. Compounded silicone fluid, an ideal accumulation phase for two-phase culture of E. californica, accumulated a large amount of alkaloids produced in a specific manner. Elicitation in two-phase culture clearly increased net alkaloid production as well as their concentrations in the accumulation phase.

  • PDF

Production Enhancement of Benzophenanthridine alkaloids in the Suspension Cultures of California poppy using Cyclodextrin (양귀비 세포 현탁배양계에서 Cyclodextrin을 이용한 Benzophenanthridine alkaloids의 생산성 증대)

  • 박세춘;조규헌
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • In this research, an extractive production system for alkaloids, where production and some degree of separation occur simultaneously, was developed in a way that the fast removal of alkaloid produced from the suspension cultures was done by capturing alkaloid with cyclodextrins. The alkaloid production was substantially enhanced up to 40 fold when the solid cultures of E. califonica cells treated with ${\beta}$-cyclodextrin compared to the control. The enhancement of alkaloid production was also observed in the suspension cultures. Interestingly, the production pattern seemed to change when the cultures were treated with ${\beta}$-cyclodextrin so that the major part of the alkaloids in the treated cultures was present in the medium, while the non-treated cultures produced the alkaloids intracellularly. ${\beta}$-cyclodextrin was the most effective one in terms of the alkaloid production among the cyclodextrilns(${\alpha}$-cylodextrin, ${\beta}$-cyclodextrin and ${\gamma}$-cyclodextrin) tested in the suspension cultures. ${\beta}$-cyclodextrin showed no adverse effect on the cell growth. The most effective concentration of ${\beta}$-cyclodextrin was observed around 1.5% (w/v) in the suspension cultures. The formation of the inclusion complex of the alkaloids with ${\beta}$-cyclodextrin in the suspension cultures was confirmed by detecting the shift of UV absorbance from 274 nm to 282 nm with a UV spectrophotometer.

  • PDF