• Title/Summary/Keyword: Calibration and Validation of Satellite data

Search Result 38, Processing Time 0.025 seconds

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

A Development of Reflector for CAL/VAL of SAR Satellite (SAR 위성 검보정을 위한 반사기 개발)

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2009
  • The payload can be classified as a passive and active type. Generally radar satellite to acquire specific information through various radar images will use the SAR (Synthetic Aperture Radar) as active type payload. the principal of SAR satellite is to receive the signal returned from certain objects and/or surfaces in order to construct an radar image. The data acquired from the satellite in its real orbit shall be needed to perform successful CAL/VAL (Calibration & Validation) because the SAR satellite have to receive the returned signal for SAR image construction. In order to do the above, the returned signal shall be related to ground targets. Especially ground target is the corner reflector (CR) for CAL/VAL. Generally the reflector has various types and shapes. Their selection can be dependent on characteristics and mission objectives of SAR satellite. In this paper, reflector focused on the optimal case and effective case has been studied and then the trihedral corner reflector under this study has been designed and its performance also analyzed.

Back-scattering Characteristic Analysis for SAR Calibration Site (SAR 검보정 Site 구축을 위한 후방 산란 특성 분석)

  • Lee, Taeseung;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.305-319
    • /
    • 2021
  • The overseas calibration sites such as Mongolia used for Korea Multi-purpose Satellite (KOMPSAT-5 or K5), have a disadvantage in that maintenance and repair costs are high and immediate response is difficult when an unexpected problem occurs. Accordingly, the necessity of establishing a domestic SAR calibration site was suggested, but the progress of related research is insignificant. In this paper, we investigated what conditions should be satisfied in terms of backscattering characteristics to construct a site for SAR satellite image quality evaluation and calibration. First of all, it was selected first by applying general indicators such as accessibility and availability among places recommended as satellite image calibration candidate sitesin Korea. Next, three places, site A (Goheung-gun, Jeollanam-do), site B (Jeonju-si, Jeollabuk-do), and site C (Daedeok Research Complex, Daejeon), were selected as the final candidates because they are relatively wide and easy to install AT or CR. Site A, located in Goheung-gun, Jeollanam-do, was best considered in terms of slope measurements, minimum site area to obtain ISLR, uniformity of DN values and backscatter coefficients, interference by strong reflectors, and backscatter clutter level.

Calibration and Validation of the Estimated Chlorophyll a Derived from KOMPSAT/OSMI Data and Fisheries Application in the East China Sea

  • Suh Young-Sang
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.911-917
    • /
    • 2005
  • A comparison between the estimated chlorophyll a from OSMI, the SeaWiFS and the chlorophyll a measured from the research cruises of National Fisheries Research and Development Institute was made. The updated empirical algorithm for calibrating and validating of the estimated chlorophyll a in the East China Sea was formulated by relationship between the estimated chlorophyll a and the field one. The relationship between the chlorophyll a and the band ratio(nLw490/555) was still highest in the OSMI data after launching of KOMPSAT satellite. The distributions of OSMI chlorophyll a were compared with those of sea surface temperature, zooplankton biomass, and catch amounts of the Pacific mackerel in the East China Sea. In case of the relationships in specially winter seasons of 2002 and 2004, the zooplankton and the fish were totally depended on the distributions of SST than those of chlorophyll a.

Experiment of KOMPSAT-3/3A Absolute Radiometric Calibration Coefficients Estimation Using FLARE Target (FLARE 타겟을 이용한 다목적위성3호/3A호의 절대복사 검보정 계수 산출)

  • Kyoungwook Jin;Dae-Soon Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1389-1399
    • /
    • 2023
  • KOMPSAT-3/3A (K3/K3A) absolute radiometric calibration study was conducted based on a Field Line of sight Automated Radiance Exposure (FLARE) system. FLARE is a system, which has been developed by Labsphere, Inc. adopted a SPecular Array Radiometric Calibration (SPARC) concept. The FLARE utilizes a specular mirror target resulting in a simplified radiometric calibration method by minimizing other sources of diffusive radiative energies. Several targeted measurements of K3/3A satellites over a FLARE site were acquired during a field campaign period (July 5-15, 2021). Due to bad weather situations, only two observations of K3 were identified as effective samples and they were employed for the study. Absolute radiometric calibration coefficients were computed using combined information from the FLARE and K3 satellite measurements. Comparison between the two FLARE measurements (taken on 7/7 and 7/13) showed very consistent results (less than 1% difference between them except the NIR channel). When additional data sets of K3/K3A taken on Aug 2021 were also analyzed and compared with gain coefficients from the metadata which are used by current K3/K3A, It showed a large discrepancy. It is assumed that more studies are needed to verify usefulness of the FLARE system for the K3/3A absolute radiometric calibration.

STATUS OF GOCI DATA PROCESSING SYSTEM(GDPS) DEVELOPMENT

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.159-161
    • /
    • 2007
  • Geostationary Ocean Color Imager (GOCI), the world-first ocean remote sensing instrument on geostationary Communication, Ocean, Meteorological Satellite (COMS), will be able to take a picture of a large region several times a day (almost with every one hour interval). We, KORDI, are in charge for developing the GOCI data processing system (GDPS) which is the basic software for processing the data from GOCI. The GDPS will be based on windows operating system to produce the GOCI level 2 data products (useful for oceanographic environmental analysis) automatically in real-time mode. Also, the GDPS will be a user-interactive program by well-organized graphical user interfaces for data processing and visualization. Its products will be the chlorophyll concentration, amount of total suspended sediments (TSS), colored dissolved organic matters (CDOM) and red tide from water leaving radiance or remote sensing reflectance. In addition, the GDPS will be able to produce daily products such as water current vector, primary productivity, water quality categorization, vegetation index, using individual observation data composed from several subscenes provided by GOCI for each slit within the target area. The resulting GOCI level 2 data will be disseminated through LRIT using satellite dissemination system and through online request and download systems. This software is carefully designed and implemented, and will be tested by sub-contractual company until the end of this year. It will need to be updated in effect with respect to new/improved algorithms and the calibration/validation activities.

  • PDF

The Analysis on the relation between the Compression Method and the Performance of MSC(Multi-Spectral Camera) Image data

  • Yong, Sang-Soon;Choi, Myung-Jin;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.530-532
    • /
    • 2007
  • Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed and discussed.

  • PDF

Application of Remote Sensing Technique to Enhance the Water Quality Model Validation in a Large Water Body (원격탐사를 이용한 대형 수체의 수질 모델 검증 효과 제고 방안에 관한 연구)

  • Lim, Hyun-Ju;Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.447-452
    • /
    • 2006
  • The remote sensing technique was applied to enhance the water qualify model validation in a large water body. Since the satellite image usually covers the wide surface area of a large water body, it can compensate for the lark of measured data points required for model calibration and verification. This paper describes the analysis of Landsat FTM+images collected on April 29th and September 4th in year 2000 to evaluate surface water temperature of Lake Paldang. The water temperature data obtained from the satellite image were compared with model results by estimating three different methods of error criteria. The residual ratios on April 29th and September 4th were 0.13 and 0.04 respectively. This showed that the model result accords with the data obtained from the process of satellite image. Without considering atmospheric interference, however, transformation process of satellite image causes relatively large residual ratio in the surface water temperature distribution pattern on April 29th. In the future study, therefore, the atmospheric properties of image acquisition point needs to be considered for the application of radiance transformation model.

Image Radiometric Quality Assessment of the Meteorological Payload on GEO-KOMPSAT-2A (정지궤도복합위성 기상탑재체 영상의 복사 성능 품질 측정)

  • Jin, Kyoung-Wook;Yang, Koon-Ho;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.30-39
    • /
    • 2013
  • In this study, calibration processes and methods of evaluating the radiometric quality of satellite images from the meteorological payload on the GEO-KOMPSAT-2A were described. MTF(Modulation Transfer Function), SNR(Signal-To-Noise Ratio), NEdT(Noise Equivalent Delta Temperature), and Dynamic Range, which are the major parameters for assessment of data radiometric quality of space-borne visible and infrared sensors, are focused. Key process of the quality check of the satellite data is the comparing the image radiometric performance parameters during the In-Oribit Test with those acquired from the ground tests. Validation plan of the image quality of the GEO-KOMPSAT-2A Meteorological Imager is addressed based on the analyses results of COMS MI data during the COMS In-Orbit Test period

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF