• Title/Summary/Keyword: Calibration Chamber Test

Search Result 103, Processing Time 0.042 seconds

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

Measurement of Small-Strain Shear Modulus Using Pressuremeter Test (공내재하시험기를 이용한 미소변형 전단탄성계수 측정)

  • Kim, Dong-Su;Park, Jae-Yeong;Lee, Won-Taek
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.109-120
    • /
    • 1997
  • In the working stress conditions, the strain level in a soil mass experienced by existing structures and during construction is less than about 0.1-1%. In order to analyse the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. The purpose of this paper is to measure the small-strain shear modulus of soils by using pressuremeter test(PMT). PMT is a unique method for assessing directly the in-situ shear modulus of soils with strain amplitude. For the accurate small strain measurements without initial disturbance effect, the unloading-reloading cycle was used and the measured modulus was corrected in view of the relevant stress and strain levels around the PMT probe during testing. Not only in the calibration chamber but in the field, PMT tests were performed on the cohesionless soils. The variation in shear modulus with strain amplitude ranging from 10-2% to 0.5% was reliably determined by PMT PMT results were also compared with other in-situ and laboratory test results. Moduli obtained from different testing techniques matched very well if the effect of strain amplitude was considered in the com pall son.

  • PDF

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Behavior of Laterally Cyclic Loaded Piles Driven into Sand (모래지반에서 반복수평하중을 받는 항타말뚝의 거동)

  • Paik, Kyu-Ho;Park, Won-Woo;Kim, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

Effects of Long-term Exposure of High and Low Humidity on Thin-film Humidity Sensors

  • Lee, Sang-Wook;Choi, Byung Il;Kim, Jong Chul;Woo, Sang-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.368-373
    • /
    • 2018
  • The effects of long-term exposure of high and low humidity on thin-film humidity sensors are investigated. Five commercially available thin-film humidity sensors are initially calibrated in a humidity chamber as a reference before longterm exposure to high and low humidity. Then, the sensors are kept in a high-humidity environment (~95 %rh) for four months. After the exposure, the sensors are calibrated in the same manner as the initial calibration. Consequently, the device reading values from the humidity sensors are elevated up to about 5 %rh. Interestingly, the degree of elevation by the high-humidity exposure shows a negative correlation with the price of the humidity sensors. Humidity sensors are then kept in a low-humidity environment (~10 %rh) for another four months. After the exposure, a calibration similar to the initial calibration is performed. As a result, the device reading from humidity sensors is decreased, indicating a recovery from the effect of high-humidity exposure. The durability test conducted in this study provides experimental evidence for the use of thin-film humidity sensors in high-humidity environments such as greenhouses and food factories for a long period of time.

Effects of Pile Diameter on the Plugging Rate and Bearing Capacity of Open -Ended Piles (말뚝직경이 재단말뚝의 폐색정도와 지지력에 미치는 영향)

  • Baek, Gyu-Ho;Kim, Yeong-Sang;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 1996
  • Model pile tests, using a calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study the effects of pile diameter on the plugging rate and bearing capacity of open-ended pile. The model piles used in the test series were devised so that the bearing capacity of an open-ended pile could be measured out into three components. The test results showed that fully plugging depth of an open -ended pile increased with increase in pile diameter and soil density. Moreover, it was found that unit plug capacity decreased with increase in pile diameter, though the penetration ratio or plugging rate of piles was constant. However, the existing formulae for estimation of plug capacity give plug capacity which is constant or increased with increase in pile diameter, when penetration ratio or plugging rate of piles is equal. Thus, it is proposed that the effect of pile diameter as well as plugging rate on bearing capacity of pile must be considered in plug capacity estimation.

  • PDF

A Study for the Fuel Economy Improvement of a Heavy Duty Engine in Commercial Vehicles(II) (상용차 탑재 대형엔진의 차량연비 개선 연구(II))

  • Lyu, Myung-Seok;Doo, Byung-Mann;Ku, Young-Gon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.104-108
    • /
    • 2008
  • Recently, studies conducted by our research group, revealed the possibility for reducing BSFC, NOx and PM emissions to meet the Euro 4 & 5 legislations. The main objective of the present study is to get better fuel economy in commercial vehicles by considering real driving conditions. Firstly, in order to improve fuel economy on fields, specifically it is required to analyze the driving pattern and make the representative modes from real field data. Secondly, it is performed to make the engine dynometer test to optimize the fuel consumption by reflecting on the representative driving modes, based on the Korea 2008 emission legislation equal to the Euro 4. The engine components such as engine calibration, combustion chamber, turbocharger and ancilliaries were modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the exhaust emission restrictions. Finally, these results were confirmed by field testing of vehicle equipped with the updated calibration engine. It was placed the two vehicles together traveling the same route and accomplishing the same amount of stops(back to back), in order to evaluate the fuel consumption in comparison to the current vehicle. Through several repeats such as the engine calibration and field test, we could get 3 % to 7.7 % vehicle fuel economy improvements compared to previous vehicle.

Study for Determination of Preconsolidation pressure and Consolidation coefficient Using KUCCS (KUCCS를 이용한 선행압밀하중 및 압밀계수 결정법에 대한 연구)

  • Kim, Tai-Jun;Lee, Moon-Joo;Hong, Sung-Jin;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.672-677
    • /
    • 2004
  • This paper is on determination method of preconsolidation pressure and consolidation coefficient using Kores University Calibration Chamber System(KUCCS). High-quality, large-size cohesive soil specimen was prepared by using two-stage slurry consolidation technique, which has many advantage for research and calibration purpose. The result from consolidation stage in KUCCS was compared with results of oedometer test. The results by Casagrcnde method gave very good agreement with preconsolidation pressure in slurry consolidometer. And, the predicted consolidation coefficient by log t method showed agreement with the experimental results in KUCCS.

  • PDF

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.