• Title/Summary/Keyword: Caldicellulosiruptor bescii

Search Result 2, Processing Time 0.018 seconds

Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii (고온성 세균 Caldicellulosiruptor bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산)

  • Lee, Han-Seung
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1450-1457
    • /
    • 2015
  • To overcome the depletion of fossil fuels and environmental problems in future, the research and production of biofuels have attracted attention largely. Thermophilic microorganisms produce effective and robust enzymes which can hydrolyze plant biomass and survive under harsh bioprocessing conditions. Caldicellulosiruptor bescii, which can degrade unpretreated plants and grow on them, is the one of the best candidates for consolidated bioprocessing (CBP). C. bescii can hydrolyze pectin efficiently as well as the major plant cell wall components, cellulose and hemicelluloses. Many glycosyl hydrolases and carbohydrate lyases with multidomain structure play an important role in plant biomass decomposition. Recently genetic tools for metabolic engineering of C. bescii have developed and bioethanol production from unpretreated biomass is achieved in C. bescii. Here, we review the recent studies for biomass degradation by C. bescii and bioethanol production in C. bescii in order to provide information about metabolic engineering of themophilic bacteria and biofuel development.

Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cadicellulosirupter bescii

  • Minseok Cha;Jun-Ha Kim;Hyo-Jin Choi;Soo Bin Nho;Soo-Yeon Kim;Young-Lok Cha;Hyoungwoon Song;Won-Heong Lee;Sun-Ki Kim;Soo-Jung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1384-1389
    • /
    • 2023
  • This work aimed to evaluate the feasibility of biohydrogen production from Barley Straw and Miscanthus. The primary obstacle in plant biomass decomposition is the recalcitrance of the biomass itself. Plant cell walls consist of cellulose, hemicellulose, and lignin, which make the plant robust to decomposition. However, the hyperthermophilic bacterium, Caldicellulosiruptor bescii, can efficiently utilize lignocellulosic feedstocks (Barley Straw and Miscanthus) for energy production, and C. bescii can now be metabolically engineered or isolated to produce more hydrogen and other biochemicals. In the present study, two strains, C. bescii JWCB001 (wild-type) and JWCB018 (ΔpyrFA Δldh ΔcbeI), were tested for their ability to increase hydrogen production from Barley Straw and Miscanthus. The JWCB018 resulted in a redirection of carbon and electron (carried by NADH) flow from lactate production to acetate and hydrogen production. JWCB018 produced ~54% and 63% more acetate and hydrogen from Barley Straw, respectively than its wild-type counterpart, JWCB001. Also, 25% more hydrogen from Miscanthus was obtained by the JWCB018 strain with 33% more acetate relative to JWCB001. It was supported that the engineered C. bescii, such as the JWCB018, can be a parental strain to get more hydrogen and other biochemicals from various biomass.