• Title/Summary/Keyword: Calcium phosphate cements

Search Result 13, Processing Time 0.036 seconds

Application of Impedance Spectroscopy to Cement-Based Materials: Hydration of Calcium Phosphate Bone Cements

  • Kim, Sung-Moon;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.156-161
    • /
    • 2006
  • Impedance spectroscopy was applied to the initial hydration of calcium phosphate bone cements in order to investigate the electrical/dielectric properties. Hydration or equivalently setting was monitored as a function of the amount of water and initial powder characteristics. Higher amounts of water produced more open microstructures, leading to higher conductivity and enhanced dielectric constant. The effects of the initial characteristics in the powder were investigated using bone cement powder prepared with and without granulation. Granulated powder exhibited a significant change in resistance and produced a higher dielectric constant than those of conventional powder. Through a simplified modeling, the effects of thickness in reaction products and pore sizes were estimated by the frequency-dependent impedance measurements. Furthermore, impedance spectroscopy was proven to be a highly reliable tool for evaluating the continuous change in pore structure occurring in calcium phosphate bone cements.

Complications after craniofacial reconstruction with calcium phosphate cements: a case report and review of the literature

  • Pourdanesh, Fereydoun;Latifi, Noorahmad;Latifi, Fatemeh
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.5
    • /
    • pp.207-211
    • /
    • 2018
  • Among different graft materials for craniofacial reconstruction, calcium phosphate cements have the advantages of alloplastic grafts and wide use. The authors report a case of foreign body reaction following frontal reconstruction with JectOS (an injectable calcium orthophosphate cement; Kasios) and reviewed the literature on complications of this material after craniofacial reconstruction from 2002 to 2017. Complications were categorized into two groups: immunologic reactions (consisting of seroma collection, chronic sinus mucosa swelling, and foreign body reaction) and non-immune events (infection, fragmentation, and ejection). It is wise to use calcium phosphate-based material only in selected cases with small defects, and long-term follow-up is needed to observe their consequences.

Synthesis and Properties of Self-hardening Calcium Phosphate Cemetns for Biological Application

  • Song, Tae-Woong;Kim, Han-Yeop
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • Fine powder of $\alpha$-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate were mixed together to prepare self-setting cements which form hydroxyapatite, one of the well-known biocompatible materials, as the end of products of hydration. Hardening behaviour of the cements was examined at the temperature range of 37~$70^{\circ}C$ and 150~$250^{\circ}C$ under the normal and hydrothermal condition respectively. The conversion of cements into hydroxyapatite was significantly improved ast elevated temperature and the paste was strengtheed by interlocking of hydroxyapatite crystals, indicating that the strength is determined by microtexture rather the amount of conversion of cements into hydroxyapatite.

  • PDF

AN EXPERIMENTAL STUDY ON MARGINAL LEAKAGE OF THE DENTAL PERMANENT CEMENTS AFFECTED BY THE TEMPORARY CEMENTS (치과용 임시합착 Cement가 영구합착 Cement의 변연누출에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyeog;Lee, Ho-Yong
    • The Journal of the Korean dental association
    • /
    • v.22 no.4 s.179
    • /
    • pp.313-322
    • /
    • 1984
  • This study was designed to observe the marginal leakage of three permanent cements affected by three temporary cements. The temporary cements used in this study were Zinc oxide-eugenol, Non-eugenol, and Calcium hydroxide cements and the permanent cements were Zinc phosphate, Polycarboxylate and Alumina reinforced EBA cements. To measure the dye penetration into permanently cemented zone, the experimental specimens were treated with the temporary cements for a week. An analysis of the data obtained from 120 specimens resulted in the following conclusions: 1. Regardless of the types of the permanent cements used, using Calcium hydroxide cement as temporary cement showed higher marginal leakage than other temporary cements. 2. Using Polycarboxylate cement as permanent cement showed less marginal leakage than other permanent cements. 3. The marginal leakage in zinc phosphate cement was similar to Alumina reinforced EBA cement regardless of the types of the temporary cements.

  • PDF

Preparation and characterization of silanized-hydroxypropyl methylcellulose/phase transformed calcium phosphate composite bone cements (실란처리된 하이드록시프로필 메틸셀룰로오스/상전이된 칼슘포스페이트 복합체 골시멘트의 제조 및 특성평가)

  • Jeong, Nahyun;Kim, Dong-Hyun;Cho, Hoon-Sang;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.243-251
    • /
    • 2016
  • Silanized-hydroxypropyl methylcellulose (Si-HPMC)/phase transformed calcium phosphate (PTCP) composites are prepared to purpose application of injectable bone cements with enhanced biocompatibility. The crystal structure and chemical state of the synthesized PTCP and Si-HPMC as solid and liquid phase of the composite cements were measured by XRD and FT-IR. The handling and mechanical properties of cements were measured by injectability tests and three-point bending tests. The in-vitro mechanical properties, XRD, and SEM results of bone cements were showed that enhanced hardening behavior was an inherent function of bone cements after in-vitro test. The cytotoxicity result of bone cements also was showed enhanced biocompatibility. Therefore, these injectable cements had potential be used as calcium phosphate cements for biomedical applications.

Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements

  • Shibuya, Kazuhiko;Ohara, Naoko;Ono, Serina;Matsuzaki, Kumiko;Yoshiyama, Masahiro
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2019
  • Objectives: Self-adhesive resin cements contain functional monomers that enable them to adhere to the tooth structure without a separate adhesive or etchant. One of the most stable functional monomers used for chemical bonding to calcium in hydroxyapatite is 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The aim of this study was to evaluate the influence of the10-MDP concentration on the bond strength and physical properties of self-adhesive resin cements. Materials and Methods: We used experimental resin cements containing 3 different concentrations of 10-MDP: 3.3 wt% (RC1), 6.6 wt% (RC2), or 9.9 wt% (RC3). The micro-tensile bond strength of each resin cement to dentin and a hybrid resin block (Estenia C&B, Kuraray Noritake Dental) was measured, and the fractured surface morphology was analyzed. Further, the flexural strength of the resin cements was measured using the three-point bending test. The water sorption and solubility of the cements following 30 days of immersion in water were measured. Results: The bond strength of RC2 was significantly higher than that of RC1. There was no significant difference between the bond strength of RC2 and that of RC3. The water sorption of RC3 was higher than that of any other cement. There were no significant differences in the three-point bending strength or water solubility among all three types of cements. Conclusions: Within the limitations of this study, it is suggested that 6.6 wt% 10-MDP showed superior properties than 3.3 wt% or 9.9 wt% 10-MDP in self-adhesive resin cement.

Antimicrobial Action of Dental Cements (치과용 시멘트의 항미생물 작용)

  • Kim, Cheol-We;Seonoo, Young-Gook;Paik, Dae-Il;Kim, Jong-Bai;Choe, Son-Jin
    • The Journal of the Korean dental association
    • /
    • v.21 no.7 s.170
    • /
    • pp.573-577
    • /
    • 1983
  • The antimicrobial action of various dental cements evaluated against common micro-organisms most frequenty found within the components of the normal bacterial flora of oral cavity. They include Streptococcus mutans (2 strains), Lactobacillus acidophilus, Actinomyces viscosus, and Streptococcus sanguis. The test was done by the use of brain heart infusion (BHI) agar plates. A standard mix of each cement was made and placed on the plates which were seeded with a standard culture of microorganisms. After incubation, the halo of bacterial growth inhibition around the cement was identified and its size was measured. Some of the cements tested had obvious antibacterial effect. The cements listed in decreasing order of effectiveness are 1) zinc phosphate and oxyphosphate, 2) silicate, 3) zinc oxide-eugenol, 4) calcium hydroxide, and 5) carboxylate.

  • PDF

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

ANTIMICROBIAL EFFECT OF ANTIBIOTICS AND ROOT CANAL CEMENTS ON THE PREDOMINANT PATHOGENIC ANAEROBIC MICROFLORA IN ROOT CANALS (근관내 주요 혐기성 병인균에 대한 수종 항생제와 근관충전용 세멘트의 항균효과에 관한 연구)

  • Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.515-525
    • /
    • 1993
  • The purpose of this study was to evaluate the susceptibility of anaerobic microorganisms to certain antibiotics and root canal cements. Prevotella intermedia(Bacteroides intermedius) ATCC 25611(serotype A), Fusobacterium nucleatum ATCC 25586, Actinomyces viscosus ATCC 15987 which are the predominant pathogenic anaerobes in dental root canals were cultured in BHI for 48 hours(Fig.1). After each $200{\mu}l$ of those broths with microorganisms was streaked on each surface of blood agar plate, 2 to 5 antibiotic discs which are impregnated with Tetrncycline, Erythromycin, Ampicillin, Clindamycin, or Vancomycin were applied on each surface of blood agar plate and cultured for 5 days anaerobically in the anaerobic chamber (Fig.2). 15 antibiotic discs for each kind of antibiotics and each species of microorganisms were tested. Also each kind of root canal cement tubes which include Zinc oxide eugenol cement, Zinc phosphate cement, Calcium hydroxide powder+DD.W., Calcium hydroxide paste(Pulpdent Tempcanal), or Vitapex(Table 1) were applied on the inoculated BAPs after $200{\mu}l$ of each experimental species of microorganisms was streaked on the surface of blood agar plates, and they were cultured for 5 days anaerobically in the anaerobic chamber(Fig.3). The sensitivity(antimicrobial effect) was determined by the diameter of the inhibition zone. The results are as follows: 1. The results of antibiotic susceptibility test(Table 2) 1) All of the tested antibiotics had antimicrobial activity with various degrees. 2) In Prevotella intermedia (old Bacteroides intermedius), the diameter of inhibition zone to Erythromycin($37.87mm{\pm}2.20$) was largest, those to Tetracycline($26.20mm{\pm}2.96$), Vancomycin($21.53mm{\pm}1.96$), Clindamycin($18.73mm{\pm}0.96$) was smaller than former orderly, and That to Ampicillin ($7.87mm{\pm}0.83$) was smallest. 3) In Actinomyces viscosus, the diameter of inhibition zone to Erythromycin($28.73mm{\pm}1.22$) was largest, those to Ampicillin($21.73mm{\pm}1.03$), Clindamycin($21.33mm{\pm}1.59$) was similarly next order, that to Vancomycin($19.00mm{\pm}1.96$) was smaller than Clindamycin, and that to Tetracycline($11.93mm{\pm}0.70$) was smallest. 4) In Fusobacterium nucleatum, the diameter of inhibition zone to Ampicillin($31.07mm{\pm}1.91$) was largest, that to Erythromycin($28.87mm{\pm}0.92$), Clindamycin($20.47mm{\pm}1.51$), Vancomycin ($16.73mm{\pm}0.96$), Tetracycline ($12.13mm{\pm}1.06$) are smaller than former orderly. 2. The results of root canal cements and pastes(Table 3) 1) The external diameter of tube is 4mm, so 4mm of the inhibition zone diameter means non-susceptable. Prevotella intermedia (old Bacteroides intermedius) was non-susceptable to Calcium hydroxide powder+D.D.W., Calcium hydroxide paste(pulpdent Tempcanal), and Actinomyces viscosus was non-susceptable to Zinc phosphate cement, Calcium hydroxide powder + D.D.W., Calcium hydroxide paste(pulpdent Tempcanal). 2) In Prevotella intermedia (old Bacteroides intermedius), the diameter of inhibition zone to Zinc oxide eugenol cement($13.67mm{\pm}3.30$) was largest, that to Vitapex($9.20mm{\pm}2.96$), Zinc phosphate cement($6.13mm{\pm}2.07$) was smaller than former. 3) In Actinomyces viscosus, the diameter of inhibition zone to Zinc oxide eugenol cement($17.40mm{\pm}5.20$) was largest and that to Vitapex($8.80mm{\pm}1.70$) was next order. 4) In Fusobacterium nucleatum, the diameter of inhibition zone to Vitapex($42.33mm{\pm}17.2$) was largest and those to Calcium hydroxide paste(Pulpdent Tempcanal)($14.47mm{\pm}3.72$) and Zinc oxide eugenol cement($8.93mm{\pm}2.71$), Zinc phosphate cement($8.20mm{\pm}2.27$), Calcium hydroxide powder+D.D.W.($5.53mm{\pm}2.10$)was next orderly. And then In Zinc oxide eugenol cement and Zinc phosphate cement group, two of fifteen samples showed no inhibition zone, in Calcium hydroxide powder + D.D.W. group, 8 of 15 samples showed no inhibition zone.

  • PDF

THE EXPERIMENTAL STUDY OF THE EFFECT OF ZINC PHOSPHATE CEMENT ON THE SOLUBILITY OF ENAMEL (인산아연 Cement가 치아 법랑질 용해에 미치는 영향에 관한 실험적 연구)

  • Kim, Sung Nam
    • The korean journal of orthodontics
    • /
    • v.5 no.1
    • /
    • pp.21-24
    • /
    • 1975
  • The purpose of this study was to investigate the effect of sinc phosphate cement on the enamel surface of extracted teeth. The tooth was placed in a test tube, which was subjected to 5ml of 0.2M acetate buffer at pH 4 by 'window technique.' The calcium content of the acetate buffer was determined by the Perkin-Elmer Model 303 Atomic Absorption Spectrophotometer. The obtained results were summarized in the following. 1. The solubility of enamel is $0.92mg/cm^2$. ml in control group. 2. The solubility of enamel is increased by treating these with zinc phosphate cements. 3. The solubility of enamel is $0.69mg/cm^2$. ml by treating with Lee Smith cement. 4. The solubility of enamel is $0.30mg/cm^2$. ml by treating with G-C's cement.

  • PDF