• Title/Summary/Keyword: Calcium mobilization

Search Result 84, Processing Time 0.019 seconds

Effect of Ouabain on the Interaction of Mitochondria with Calcium (Mitochondria의 Calcium Uptake에 미치는 Ouabain의 영향)

  • Hong, Sa-Ack;Park, Chan-Woong;Kim, Myung-Suk;Chung, Myung-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1972
  • Many studies on the mechanism of the inotropic action of cardiac glycosides have shown the possible intimate relationship between the mobilization of intracellular calcium and inotropic effect. Evidence obtained from recent studies suggests that cardiac glycosides may increase the intracellular $Ca^{++}$ concentration through the release of this ion from cellular or intracellular membrane. It seemed imperative to study the effect of ouabain on the interaction between mitochondria and $Ca^{++}$, because mitochondria are known to have a rather powerful $Ca^{++}$ pump mechanism which may have an important role on the regulation of intracellular $Ca^{++}$ concentration. The present investigations was made into the effect of ouabain on $Ca^{++}$ untake of mitochondria in the presence of ATP and its dependence on $K^+$ and $Na^+$ in the medium. The results are summarized as follows: 1. The rate of rise in the turbidity of superprecipitation was solely influenced by ionic strength of the medium, not by the species of ion, i.e. $Na^+$ or $K^+$. The higher ionic strength suppressed and the lower enhanced the rate of superprecipitation respectively. 2. No effect of ouabain was found on the rate of superprecipitation. 3. Mitochondria depressed the rate of superpretipitation, and the depressed rate of superprecipitation by mitochondria was reversed by ouabain, and the degree of this reversal was almost identical in $Na^+$ and $K^+$ medium. 4. $Ca^{++}$ uptake of mitochondria was inhibited by ouabain in the presence of ATP and the degree of inhibition showed the dose-response manner in terms of concentration of ouabain. 5. In the absence of ATP, mitochondria took or the $Ca^{++}$ in initial period but released it later. Such uptake and release of $Ca^{++}$ was not influenced by ouabain. 6. It is suggested that intracellular calcium mobilization by ouabain through the action upon the mitochondria was due to inhibition on ATP-dependent $Ca^{++}$ uptake by this agent, not to the action upon so called binding.

  • PDF

A Study on the Mobilization of Calcium by Ginseng Alcohol Extract in Rabbit Vascular Smooth Muscle (가토 대동맥 평활근에서 인삼 알콜 추출물에 의한 Calcium 동원에 관한 연구)

  • Kim, Yong-Bae;Lee, Young-Ho;Kang, Bok-Soon;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.77-90
    • /
    • 1990
  • There have been conflicting reports concerning the effect of Panax ginseng on the contractility of vascular smooth muscle, i.e., Panax ginseng extract has been reported to cause relaxation, contraction or to have no effect on the tension of vascular smooth muscle. A further investigation of $Ca^{++}$ stores which supply $Ca^{++}$ for contraction of vascular smooth muscle is needed to understand the underlying mechanisms of this conflicting effect of ginseng alcohol extract (GAE). The present study was intended to examine the sources of calcium mobilized for contraction of vascular smooth muscle by GAE. Aortic ring preparations were made from the rabbit thoracic aorta and endothelial cells were removed from the ring. The contractility of the aortic ring was measured under various experimental conditions and $Ca^{++}$ flux across the membrane of aortic ring and the sarcoplasmic reticulum and mitochondria were measured with a calcium selective electrode. The result were summarized as follows; 1) At low concentration of extracellular $Ca^{++}$, GAE increased the contractility of vascular smooth muscle in dose-dependent fashion except high concentration $Ca^{++}$ (1 mM). 2) In the presence of ryanodine, GAE still increased contractility of vascular smooth muscle as much as control group, but in the presence of caffeine, GAE increased it significantly. i.e. Their effects seemed to be additive. 3) In the presence of verapamil+lanthanum, and verapamil+lanthanum+ryanodine, the contractility of the vascular smooth muscle was decreased, but a dose dependent increase in vascular tension was still demonstrated by GAE although total tension was low. 4) GAE increased $Ca^{++}$ efflux from vascular smooth muscle cells, but have no effect on $Ca^{++}$ influx. 5) GAE increased $Ca^{++}$ efflux from sarcoplasmic reticulum and mitochondria vesicles. From the above results, it may be concluded that GAE increased the release of $Ca^{++}$ from sarcoplasmic reticulum, mitochondria or other intracellular $Ca^{++}$ stores of vascular smooth muscle, but it does not increase $Ca^{++}$ influx across the plasma membrane.

  • PDF

The Inhibitory Effects of Glycyrrhiza uralensis on human Platelet Aggregation and Thrombus Formation

  • Seung Na Ko;Ji Won Son;Gyu Ri Kim;Min Seon Kim;Yea Jin Lee;Seung Ju Kim;Ji Hyeon Shin;Da In Jo;Woo Young Bok;Hye Gyo Oh;Hyuk-Woo Kwon
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.242-248
    • /
    • 2023
  • Platelets are activated at the sites of vascular injury by a number of molecules, including adenosine diphosphate, collagen and thrombin. The full platelet aggregation is absolutely essential for the normal hemostasis. Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and is known to have various effects such as antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. However, the platelet inhibitory effect of Glycyrrhiza glabra extract (GGE) has not been identified. In this study, we investigated if GGE inhibited platelet aggregation. We observed that GGE inhibited collagen-induced platelet aggregation, Ca2+ mobilization, and thromboxane A2 generation. In addition, GGE suppressed phosphorylation of phosphatidylinositol-3 kinase (PI3K), Akt and elevated phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R), vasodilator stimulated phosphoprotein (VASP). Taken together, GGE showed strong antiplatelet effects and may be used to block platelet-mediated cardiovascular diseases.

Effects of Adenosine and $N^6-cyclopentyladenosine$ on Superoxide Production, Degranulation and Calcium Mobilization in Activated Neutrophils (Adenosine과 $N^6-cyclopentyladenosine$이 활성화된 중성호성 백혈구에서 Superoxide 생성, 탈과립과 칼슘동원에 나타내는 영향)

  • Kim, Woo-Jung;Shin, Yong-Kyoo;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.333-344
    • /
    • 1995
  • The effects of adenosine and $N^6-cyclopentyladenosine$ (CPA) on superoxide production, myeloperoxidase release and $Ca^{2+}$ mobilization stimulated by fMLP in neutrophils were investigated. The effects were also observed on the stimulatory actions of C5a and PMA and the responses in lipopolysaccharide-primed neutrophils. In addition, the involvement of cAMP in the inhibitory action of adenosine was examined. The fMLP-stimulated neutrophil respiratory burst, degranulation and intracellular $Ca^{2+}$ mobilization may be regulated by activation of adenosine receptors. Adenosine may not affect the stimulated neutrophil responses due to activation of protein kinase C. fMLP-stimulated respiratory burst in lipopolysaccharide-primed neutrophils may be less sensitive to adenosine, compared with nonprimed cells. The inhibitory effect of theophylline in the presence of adenosine on neutrophil responses appears to be ascribed to accumulation of intracellular cAMP.

  • PDF

Studies on Secretion of Catecholamine Evoked by Caffeine from the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Lee, Jang-Hee;Kim, Won-Shik;Kim, Soo-Bok;Lee, Eun-Hwa;Lee, Byeong-Joo;Ko, Suk-Tai
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.55-67
    • /
    • 1991
  • The influence of caffeine on secretion of catecholamines (CA) was examined in the isolated perfused rat adrenal gland. Caffeine (0.3 mM) perfused into an adrenal vein of the gland produced a marked increase in secretion of CA. This secretory effect of CA evoked by perfusion of caffeine for one minute was considerably prolonged, lasting for more than 90 minutes. The tachyphylaxis to releasing effect of CA induced by caffeine was observed by repeated perfusion of this drug. The caffeine-evoked CA secretion was markedly inhibited by pretreatment with ouabain, trifluoperazine, TMB-8 and perfusion with calcium-free Krebs solution containing 5 mM EGTA, but was not affected by perfusion of calcium-free Krebs solution without other addition. CA secretion evoked by caffeine was not reduced significantly by pretreatment with chlorisondamine but after the first collection of perfusate for 3 min was clearly inhibited. Interestingly, the caffeine-evoked CA secretion was considerably potentiated by pretreatment with atropine or pirenzepine, but after the first collection for 3 min it was markedly decreased. These experimental results suggest that caffeine causes a marked increase in secretion of CA from the isolated perfused rat adrenal gland by an extracellular calcium-independent exocytotic mechanism. The secretory effect of caffeine may be mainly due to mobilization of calcium from an intracellular calcium pool in the rat chromaffin cells and partly due to stimulation of both muscarinic and nicotinic receptors.

  • PDF

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

INFLUENCE OF PINACIDIL ON CATECHOLAMINE SECRETION EVOKED BY CHOLINERGIC STIMULATION AND MEMBRANE DEPOLARIZATION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Park, Geun-Hong;Choi, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.148-149
    • /
    • 1998
  • It has been known that potassium channel openers are a new class of molecules that have attracted general interest because of their potent antihypertensive activity in vivo and vasorelaxant activity in vitro (Hamilton and Weston, 1989). In the present study, it was attempted to examine the effect of the potassium channel opener on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of pinacidil (30-300 uM) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $K^{+}$ (56 mM), DMPP (100 uM for 2 min), McN-A-343 (100 uM for 2 min), cyclopiazonic acid (10 uM for 4 min) and Bay-K-8644 (10 uM for 4 min). Also, under the presence of minoxidil (100 uM), which is also known to be a potassium channel activator, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with pinacidil (100 uM) under the presence of glibenclamide (1 uM), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were considerably recovered to a considerable extent of the normal release as compared to that of pinacidil only. These results, taken together, suggest that pinacidil cause the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings suggest strongly that these potassium channel openers-sensitive membrane potassium channels also play an important role in regulating CA secretion.

  • PDF

Influence of 5′-(N′-Ethylcarboxanlido) Adenosine on Catecholarnine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Hyeong-Geun;Woo, Seong-Chang
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.338-348
    • /
    • 2000
  • The present study was attempted to determine the effect of 5'-(N'-ethylcarboxamido) adenosine (NECA), which is an potent $A_2$-adenosine receptor agonist, on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. NECA (20 nM) perfused into the adrenal vein for 60 min produced a time-related inhibition in CA secretion evoked by ACh (5.32x10$^{-3}$ M), high $K^{+}$(5.6x10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Also, in the presence of $\beta$,${\gamma}$-methylene adenosine-5'-triphosphate (MATP), which is also known to be a selective $P_{2x}$-purinergic receptor agonist, showed a similar inhibition elf CA release evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. However, in adrenal glands preloaded with 20$\mu$M NECA for 20 min under the presence of 20$\mu$M 3-isobutyl-1-methyl-xanthine (IBMX), an adenosine receptors antagonist, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were much recovered in comparison to the case of NECA-treatment only. Taken together, these results indicate that NECA causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. This inhibitory effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through the adenosine receptor stimulation. Therefore, it is suggested that the inhibitory mechanism of adenosine receptor stimulation may play a modulatory role in regulating CA secretion.n.n.

  • PDF

Mechanism of Pituitary Adenylate Cyclase-Activating Polypeptide-Induced Inhibition on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Kang, Jeong-Won;Kim, Young-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.339-350
    • /
    • 1999
  • The present study was attempted to examine the effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of PACAP (10 nM) into an adrenal vein for 60 min produced a great inhibition in CA secretion evoked by ACh $(5.32{\times}10^{-3}\;M),$ high $K^+\;(5.6{\times}10^{-2}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min),$ McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ cyclopiazonic acid $(10^{-5}\;M\;for\;4\;min)$ and Bay-K-8644 $(10^{-5}\;M\;for\;4\;min).$ Also, in the presence of neuropeptide (NPY), which is known to be co-localized with norepinephrine in peripheral sympathetic nerves, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with PACAP (10 nM) under the presence of VIP antagonist $[(Lys^1,\;Pro^{2.5},\;Arg^{3.4},\;Tyr^6)-VIP\;(3\;{\mu}M)]$ for 20 min, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not altered greatly in comparison to the case of PACAP-treatment only. Taken together, these results suggest that PACAP causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells.

  • PDF