• Title/Summary/Keyword: Calcium meta phosphate

Search Result 4, Processing Time 0.02 seconds

Survival of surface-modified short versus long implants in complete or partially edentulous patients with a follow-up of 1 year or more: a systematic review and meta-analysis

  • Medikeri, Raghavendra Shrishail;Pereira, Marisca Austin;Waingade, Manjushri;Navale, Shwetambari
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.261-281
    • /
    • 2022
  • Purpose: Short implants are a potential alternative to long implants for use with bone augmentation in atrophic jaws. This meta-analysis investigated the survival rate and marginal bone level (MBL) of surface-modified short vs. long implants. Methods: Electronic and manual searches were performed for articles published between January 2010 and June 2021. Twenty-two randomized controlled trials (RCTs) comparing surface-modified short and long implants that reported the survival rate with at least 1 year of follow-up were selected. Two reviewers independently extracted the data, and the risk of bias and quality of evidence were evaluated. A quantitative meta-analysis was performed regarding survival rate and MBL. Results: The failure rates of surface-modified short and long implants differed significantly (risk ratio, 2.28; 95% confidence interval [CI], 1.46, 3.57; P<0.000). Long implants exhibited a higher survival rate than short implants (mean follow-up, 1-10 years). A significant difference was observed in mean MBL (mean difference=-0.43, 95% CI, -0.63, -0.23; P<0.000), favoring the short implants. Regarding the impact of surface treatment in short and long implants, for hydrophilic sandblasted acid-etched (P=0.020) and titanium oxide fluoride-modified (P=0.050) surfaces, the survival rate differed significantly between short and long implants. The MBL differences for novel nanostructured calcium-incorporated, hydrophilic sandblasted acid-etched, and dual acid-etched with nanometer-scale calcium phosphate crystal surfaces (P=0.050, P=0.020, and P<0.000, respectively) differed significantly for short vs. long implants. Conclusions: Short surface-modified implants are a potential alternative to longer implants in atrophic ridges. Long fluoride-modified and hydrophilic sandblasted acid-etched implants have higher survival rates than short implants. Short implants with novel nanostructured calcium-incorporated titanium surfaces, hydrophilic sandblasted acid-etched surfaces, and dual acid-etched surfaces with nanometer-scale calcium phosphate crystals showed less marginal bone loss than longer implants. Due to high heterogeneity, the MBL results should be interpreted cautiously, and better-designed RCTs should be assessed in the future.

EFFECT OF VARIOUS INODIZING CHARACTERISTICS ON BONE INTEGRATION OF TITANIUM IMPLANT SURFACE DESIGN (다양한 양극산화막 처리방법이 임프란트 골유착에 미치는 영향)

  • Cha, Soo-Ryun;Lee, Jun;Min, Seung-Ki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.5
    • /
    • pp.417-427
    • /
    • 2008
  • The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.

Pre-heating treatment for Prevention of Tissue Softening of Radish Root Kimchi (예비열처리(豫備熱處理)에 의한 무우김치의 연화방지(軟化防止))

  • Yook, Cheol;Chang, Koom;Park, Kwan-Hwa;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 1985
  • The effects of preheating and calcium chloride on prevention of tissue softening was examined during fermentation and storage of radish root kimchi. In order to find the optimum condition of preheating treatment, activities of pectinesterase (PE) and polygalacturonase (PG) in radish root were measured with respect to $CaCl_2$ concentration and temperature. A maximum firmness was obtained with treatment in 0.05M $CaCl_2$ at $55^{\circ}C$ for 2hr which was optimum conditions for PE activity, while PG was inhibited at the $CaCl_2$ concentration of 0.05M. Firmness of radish root kimchi prepared by preheating treatment was decreased little during fermentation and storage for 25 days.

  • PDF

Removal Characteristics of Nitrogen and Phosphorus by Struvite Crystallization using Converter Slag as a Seed Crystal (제강전로슬래그를 정석재로 이용한 Struvite 정석반응에 의한 질소와 인의 제거특성)

  • Yim, Soo-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.879-886
    • /
    • 2010
  • This study investigated the removal characteristics of highly concentrated $NH_4$-N and $PO_4$-P by struvite crystallization using converter slag as a seed crystal. The optimal pH range for removal and recovery of $NH_4$-N and $PO_4$-P by struvite crystallization was measured to be 8.0~8.75, in which total removal efficiencies for $NH_4$-N and $PO_4$-P by struvite precipitation and crystallization were 34.3~61.0% and 91.0~96.2%, respectively. The maximum removal efficiencies for $NH_4$-N and $PO_4$-P by struvite crystallization were 29.4% at pH 8.5 and 65.1% at pH 8.0, respectively. The removal efficiency of $NH_4$-N by struvite crystallization decreased with increasing calcium ion concentration. The analysis results of SEM, EDS and XRD exhibited that $NH_4$-N and $PO_4$-P in meta-stable region of struvite crystallization could be eliminated through formation of magnesium ammonia phosphate (MAP) and hydroxyapatite (HAp) on seed crystals by struvite precipitation and crystallization.