• Title/Summary/Keyword: Calcium dialuminate

Search Result 3, Processing Time 0.016 seconds

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Studies on Alumina Cement from Alunite (II) (Physical Properties of Alumina Cement) (명반석을 이용한 알루미나 시멘트의 제조 (II) (알루미나 시멘트의 특성))

  • 한기성;최상욱;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 1979
  • In the previous paper, it was reported that formation of desirable calcium alunimate(CA) in clinker was considerably affected by sulfur-contaminated alumina which was prone to form a disadvantageous mineral, $C_4A_3S$. In this study, however, sulphate-free alumina cement was made from sulfur-free alumina refined from alunite and corresponding materials. The major minerals in the clinker were identified by X-ray diffraction patterns as calcium aluminate (CA), calcium dialuminate $(CA_2)$ and dicalcium alumino silicate $(C_2AS)$. The formation of CA was more effective with decreasing contents of silica to 2 per cent or less and sulfur in the refined alumina. Physical properties of prepared alumina cement such as setting time, stability and compressive strength were measured. The values were similar to those of commercial alumina cements.

  • PDF

Chloride Binding Properties of Portland Cement Binder Incorporating CaAl2O4-CaAl4O7 (CaAl2O4-CaAl4O7 혼입 포틀랜드 시멘트 결합재의 염소이온 고정 특성)

  • Han, Jae-Doh;Lee, Yun-Su;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study conducted to understand effects of CA (CaAl2O4) and CA2 (CaAl4O7) ratio on chloride binding ability and compressive strength and pore structure of cement mortar incorporating mixture of CA and CA2. The Portland cement based specimens were mixed with the clinkers CA and CA2, and these calcium aluminate clinker mixture were replaced 0, 5, 10% by weight of cement. After all the test specimens were cured for 28 days under water curing, they were immersed in the distilled water and NaCl solution. As a result, 28 days compressive strength of all specimens was similar, and As the replacement ratio of calcium aluminate clinker in the specimen increased, Friedel's salt production tended to increase. However, it was dependent on the amount of Al2O3 in the level of 5% replacement and CA ratio in the level of 10% replacement. Through equilibrium isotherm result, it was also indicated that as replacement ratio of calcium aluminate clinker in cement matrix increased, chloride binding capacity was improved, and chloride penetration was suppressed. In this study, the specimen replaced with 10% of the calcium aluminate clinker mixture (CA 39%, CA2 60%) was remarkable to control chloride attack. We figured out necessity to understand optimal CA/CA2 ratio to effectively apply CA2 as a sustainable building material by improving the chloride binding ability in Portland cement based system.