• Title/Summary/Keyword: Calcium channel

Search Result 440, Processing Time 0.028 seconds

Effect of Econazole on ATP- and Compound 48/80-Induced Histamine Release in Rat Peritoneal Mast Cells (흰쥐의 복강비만세포에서 ATP와 Compound 48/80에 의한 Histamine 유리에 미치는 Econazole의 영향)

  • 장용운;이윤혜;이승준;서무현;윤정이
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.282-286
    • /
    • 2001
  • To investigate the different mechanism between ATP and compound 48/80 (C$_{48}$80/)-induced histamine release, we observed effects of calcium antagonists in histamine release of rat peritoneal mast cells. Verapamil and diltiazem (voltage-dependent calcium channel blocker) and TMB-8 (a blocker of intracellular calcium release) significantly inhibited ATP-induced histamine release, but did not inhibit $C_{48}$80/-induced histamine release. Econazole (a blocker of receptor-operated calcium channel) dose-dependently inhibited both ATP and $C_{48}$80/-induced histamine release, but inhibitory effect of econazole in ATP-induced histamine release was more potent than that in $C_{48}$80/-induced histamine. EGTA dose-dependently inhibited ATP and $C_{48}$80/-induced histamine release, but $C_{48}$80/-induced histamine release was slightly inhibited by high concentrations (>2 mM) of EGTA. These results suggest that ATP-induced histamine release is related to broth intracellular calcium release and extracellular calcium influx via voltage-dependent calcium channel and receptor-operated calcium channel. $C_{48}$80/-induced histamine release is related to extracellular calcium influx, especially by receptor-operated calcium channel rather than voltage-dependent calcium channel.

  • PDF

The Study on Association of Calcium Channel SNPs with Adverse Drug Reaction of Calcium Channel Blocker in Korean

  • Chung, Myeon-Woo;Bang, Sy-Rie;Jin, Sun-Kyung;Woo, Sun-Wook;Lee, Yoon-Jung;Kim, Young-Sik;Lee, Jong-Keuk;Lee, Sung-Ho;Roh, Jae-Sook;Chung, Hye-Joo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.156-161
    • /
    • 2007
  • Rapid advances in pharmacogenomic research have provided important information to improve drug selection, to maximize drug efficacy, and to minimize drug adverse reaction. The SNPs that are the most abundant type of genetic variants have been proven as valid biomarkers to give information on the prediction of pharmacokinetic/pharmacodynamic properties of drugs based on genotype. In order to elucidate a correlation between SNPs of calcium channel encoding gene and adverse reactions of calcium channel blockers, we investigated SNPs in CACNA1C gene known as a binding site of calcium channel blocker. 96 patients with hypertension who had taken or are taking an antihypertensive drug, 1,4-dihydropyridine (DHP) were included for analysis. These patients were composed of 47 patients with adverse drug reactions (ADR) such as edema from calcium channel blockers and 49 patients without ADR as a control group. The exons encoding the drug binding sites were amplified by PCR using specific primers, and SNPs were analyzed by direct sequencing. We found that there was no SNP in the exons encoding DHP binding site, but four novel SNPs in the exon-intron junction region. However, four novel SNPs were not associated with the ADR of calcium channel blockers. In conclusion, this study showed that ADR from calcium channel blockers may not be caused by SNPs of the binding sites of calcium channel blockers in CACNA1C gene.

Pharmacophore Modelling, Quantitative Structure Activity Relationship (QSAR) and Docking Studies of Pyrimidine Analogs as Potential Calcium Channel Blockers

  • Choudhari, Prafulla B.;Bhatia, Manish S.;Jadhav, Swapnil D.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • The present communication deals with the Pharmacophore modeling, 3D QSAR and docking analysis on series of Pyrimidine derivatives as potential calcium channel blockers. The computational studies showed hydrogen bond donor, hydrogen bond acceptor, and hydrophobic group are important features for calcium channel blocking activity. These studies showed that Pyrimidine scaffold can be utilized for designing of novel calcium channels blockers for CVS disorders.

Calcium Movement in Carbachol-stimulated Cell-line (Calcium수송기전에 미치는 Carbachol의 영향)

  • Lee, Jong-Hwa
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.355-363
    • /
    • 1995
  • It has been well known that the intracellular calcium concentration $([Ca^{2+}]_i)$ in living cell is very sensitive to live or to survive, but the transmembrane system of calcium ion, especially mechanism of calcium ion movement in unexcitable state has been little elucidated. Though many proposed theories for calcium ion transport have been reported, it is still unclear that how could the sustained maintenance in cytosolic calcium level be done in cell. Since one of possible mechanisms of calcium transport may be related to the acetylcholine receptor-linked calcium channel, author performed experiment to elucidate this mechanism of calcium influx related to cholinergic receptor in ml muscarinic receptor-transfected RBL-2H3 cell-line. 1) The effects of carbachol both on calcium ion influx and on the secretion of hexosaminidase were respectively observed in the manner of time-related or concentration-dependent pattern in this model. 2) The effects of several metal cations on calcium transport were shown in carbachol-induced cell-line. 3) Atropine was administered to examine the relationship between cholinergic receptor and calcium ion influx in this model. 4) PMA (Phorbol 12-myristate 13-acetate) or PTx (Pertussis toxin) was respectively administered to examine the secondary mediator which involved pathway of calcium ion movement in carbachol-induced cell-line. The results of this experiments were as follows; 1) Carbachol significantly stimulated both the calcium influx and the secretion of hexosaminidase in the manner of the concentration-dependent pattern. 2) Atropine potently blocked the effects of carbachol in concentration-response manner. 3) Administered metal cations inhibited the calcium influx in carbachol-stimulated this model to the concentration-related pattern. 4) PMA did not inhibit carbachol-induced secretion of hexosaminidase, but blocked the calcium influx in this cell-line. 5) The suppression of carbachol-induced hexosaminidase secretion was shown in PTx-treated cell -line.

  • PDF

N-Type Calcium Channels

  • Elmslie, Keith S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.427-437
    • /
    • 2000
  • The early studies of cardiac and smooth muscle cells provided evidence for two different calcium channels, the L-type (also called high-voltage activated [HVA]) and T-type (low-voltage activated [LVA]). These calcium channels provided calcium for muscle contractions and pace-making activities. As might be expected, the number of different calcium channels increased when researchers studied neurons and the identification of the neuronal calcium channels has proven to be much more difficult than with the muscle calcium channels. There are two reasons for this difficulty; (1) a larger number of different calcium channels in neurons and (2) many of the different calcium channels have similar kinetic properties. This review uses the N-type calcium channel to illustrate the difficulties in identifying and characterizing calcium channels in neurons. It shows that the discovery of toxins that can specifically block single calcium channel types has made it possible to easily and rapidly discern the physiological roles of the different calcium channels in the neuron, Without these toxins it is unlikely that progress would have been as rapid.

  • PDF

The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity

  • Park, Eunice Yon June;Baik, Julia Young;Kwak, Misun;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2019
  • Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when co-expressed with CaM and $CaM{\triangle}N$. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ${\triangle}EF$-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.

Interplay Between Intra- and Extracellular Calcium Ions

  • Lee, Eun Hui;Kim, Do Han;Allen, Paul D.
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.315-329
    • /
    • 2006
  • Two, well characterized cationic channels, the ryanodine receptor (RyR) and the canonical transient receptor potential cation channel (TRPC) are briefly reviewed with a particular attention on recent developments related to the interplay between the two channel families.

Effect of Calcium Entry Blockers on the Calcium Transport in the Isolated Sarcolemmal membrane from the Porcine Small Intestine (돼지 소장 평활근 세포막에서의 Calcium 이동에 미치는 Calcium entry blockers 의 영향)

  • Seok, Jeong-Ho;Lim, Jong-Ho;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 1986
  • There are some evidence for the presence of more than one type of calcium channels. To investigate whether organic calcium antagonist sensitive calcium channels exist in the isolated sarcolemmal membrane, we prepared high KCl-loaded sarcolemmal vesicle from the procine small instine, and induced calcium transport by high $K^+$ concentration or by electrical stimulation after preincubation of KCl-loaded vesicle in the low potassium solution. Calcium transport induced by high $K^+$ concentration (84.7mM) was significantly increased (p<0.05), compared with that by low $K^+$ concentration (2.08 mM), and not inhibited by diltiazem $(10^{-6}\;M)$. Calcium transport was inactivated with time. By continuous electrical stimulation (3V, 15Hz, 25m see), calcium transport was markedly increased, and inhibited significantly by dilltiazem $(10^{-6}\;M)$ and nifedipine $(10^{-6}\;M)$ (p<0.005), compared with the value of control without electrical stimulation. Calcium transport by electrical stimulation was not inactivated with time for at least 2 min. From these results, it was concluded that there was organic calcium antagonist sensitive channel in the isolated intestinal sarcolemma membrane, which was activated by electrical stimulation.

  • PDF

Calcium Ions are Involved in Modulation of Melittin-induced Nociception in Rat: I. Effect of Voltage-gated Calcium Channel Antagonist

  • Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.255-261
    • /
    • 2006
  • Melittin-induced nociceptive responses are mediated by selective activation of capsaicin-sensitive primary afferent fibers and are modulated by excitatory amino acid receptor, cyclooxygenase, protein kinase C and serotonin receptor. The present study was undertaken to investigate the peripheral and spinal actions of voltage-gated calcium channel antagonists on melittin-induced nociceptive responses. Changes in mechanical threshold and number of flinchings were measured after intraplantar (i.pl.) injection of melittin $(30\;{\mu}g/paw)$ into mid-plantar area of hindpaw. L-type calcium channel antagonists, verapamil [intrathecal (i.t.), 6 or $12\;{\mu}g$; i.pl.,100 & $200\;{\mu}g$; i.p., 10 or 30 mg], N-type calcium channel blocker, ${\omega}-conotoxin$ GVIA (i.t., 0.1 or $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) and P-type calcium channel antagonist, ${\omega}-agatoxin$ IVA (i.t., $0.5\;{\mu}g$; i.pl., $5\;{\mu}g$) were administered 20 min before or 60 min after i.pl. injection of melittin. Intraplantar pre-treatment and i.t. pre- or post-treatment of verapamil and ${\omega}-conotoxin$ GVIA dose-dependently attenuated the reduction of mechanical threshold, and melittin-induced flinchings were inhibited by i.pl. or i.t. pre-treatment of both antagonists. P-type calcium channel blocker, ${\omega}-agatoxin$ IVA, had significant inhibitory action on flinching behaviors, but had a limited effect on melittin-induced decrease in mechanical threshold. These experimental findings suggest that verapamil and ${\omega}-conotoxin$ GVIA can inhibit the development and maintenance of melittin-induced nociceptive responses.

Effects of ${\alpha}-,\;{\beta}-Adrenergic$, and Calcium Channel Blockers on Renin- Angiotensin System in Perfused Rat Heart

  • Park, Chang-Gyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.55-62
    • /
    • 1998
  • ${\alpha},\;{\beta}-Adrenergics$, and calcium channels were known to be related to inducing cardiac hypertrophy. Recently, it was reported that the cardiac renin-angiotensin system (RAS) was an important factor in ventricular hypertrophy. The present study was aimed to investigate the effects of ${\alpha},\;{\beta}-adrenergic$, and calcium channel blockers that might be involved in the regulation of cardiac RAS. The reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of renin gene in the perfused rat heart. Changes in angiotensin converting enzyme (ACE) activity and cyclic AMP (cAMP) content which were thought to play a role in inducing cardiac hypertrophy were measured in the perfused rat heart. The expression of renin gene was not only increased by isoproterenol with metoprolol-pretreatment but also increased by vasopressin treatment in the presence of calcium channel blocker, nifedipine or verapamil. Either prazosin alone or norepinephrine with prazosin-pretreatment significantly increased the ACE activity. However, isoproterenol with metoprolol-pretreatment significantly decreased the ACE activity. On the other hand, the ACE activity was not changed by vasopressin, nifedipine, or verapamil treatments. The content of cAMP was significantly increased by either isoproterenol or vasopressin treatment. According to these results, renin gene expression was associated with ${\beta}2$ - adrenoceptor and calcium channel. ACE activity was associated with ${\alpha}-\;and{\beta}2$ - adrenoceptor. In conclusion, ${\beta}2$ - adrenoceptor was important in cardiac renin gene expression and ACE activity and ${\alpha},\;{\beta}$ -adrenergic, and calcium channel blockers might be involved in the regulation of cardiac RAS in a complicated way.

  • PDF