• Title/Summary/Keyword: Calcium Fertilizer

Search Result 280, Processing Time 0.027 seconds

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Effects of Amo-1618 on the Yield, Behavior of Mineral Nutritions and Uptake Ratio Employing P-32 Labelled Double Calcium Super-phosphate in Rice Plants (水稻(수도)에 대한 질소(窒素) 및 인산효율증진(燐酸效率增進)에 관한 연구(硏究) -(수도(水稻)에 대한 Amo-1618 처리(處理)가 수량(收量), 무기영양요소(無機營養要素)의 동태(動態) 및 $P^{32}$ 표식중과석(標識重過石)의 이용율(利用率)에 미치는 영향(影響))-)

  • Ahn, Hak-Soo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.173-184
    • /
    • 1969
  • To elucidate the effect of Amo-1618(4-hydroxyl-5-isopropyl-2-methlphenyl trimethyl ammonium chloride, 1-piperidine carboxylate) known as a kind of growth retardant, on the growth, grain yield, increasing the efficiency of nitrogen fertilizer, behavior of mineral nutritions and the rate of phosphorus utilization, this experiment was conducted pot culture method in a vinyl house. Two nitrogen level, namely, practical nitrogen level(1 N) and three times nitrogen level(3 N) was made and labelled double-calcium-superphosphate $Ca(H_2P^{32}O_4)_2.\;2H_2O)$ as a source of radioactive phosphorus(P-32) was employed $80\;{\mu}c/pot$, respectively. Rice seedlings, variety 'Suwon No. 82', was transplanted to a 1/50,000 a china pot on June 13 in 1968. For treatment, at early stage of tillering, 10,000 ppm solution of Amo-1618 was foliar sprayed only one time. The Duncan's new mutiple-range test was adopted for statistical analysis evaluating experimental data at 5% level significance. The results obtained may be summarized as follows; 1) No significant difference was found among the treatments in plant height, but in plot of Amo-1618 treatment and 3 N level, number of tillers was significantly increased than that of others. 2) Weight of 10,000 kernels and seed-setting rate was also remarkably increased in same treatment above. 3) Grain yield per pot was significantly increased in Amo-1618 and 3 N level application. This results seemed to be due to the increased the factors on the yield. 4) Contents of nitrogen and phosphorus per cent in the grain was likewise increased in Amo-1618 and 3 N application. There is, however, no difference among treatments in the content of nitrogen and phosphorus in the leaves and culms of rice plants. 5) On the other hand, the contents of potassium and magnesium, no distinctly tendeny showed among treatments. 6) The rate of phosphorus utilization was significantly increased in the plot of Amo-1618 and 3 N application.

  • PDF

Comparison between phosphorus absorption coefficient and Langmuir adsorption maximum (전토양(田土壤) 인산(燐酸)의 흡수계수(吸收係數)와 Langmuir 최대흡착량(最大吸着量)과의 비교연구(比較硏究))

  • Ryu, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 1975
  • Laboratory experiments on the phosphorus adsorption by soil were conducted to evaluate the parameters for determination of phosphorus adsorption capacity of soil, which serve as a basis for establishing the amount of phosphorus required to improve newly reclaimed soil and volcanic ash soil. The calculated Langmuir adsorption maxima varied from 6.2-32.9, 74.7-90.4 and 720-915mg p/100g soil for cultivated soils, non-cultivated soils, and volcanic ash soils respectively. The phosphorus absorption coefficient ranged from 116-179, 161-259 and 1,098-1,205mg p/100g soil for cultivated soils, non-cultivated soils, and volcanic ash soils respectively. The ratio of the phosphorus absorption coefficient to Langmuir adsorption maximum was low in soils of high phosphorus adsorption capacity (1.3-1.5) and high in soils of low phosphorus adsorption capacity (2.2-18.7). Changes in the amount of phosphurus adsorption induced by liming and preaddition of phosphorus were hadly detected by the phosphorus absorption coefficient, which is measured using a test solution with a relatively high phosphorus concentration. The Langmuir adsorption maximum was a more sensitive index of the phosphorus adsorption capacity. The Langmuir adsorption maxima of the non-cultivated soils, which were treated with an amount of calcium hydroxide equivalent to the exchangeable Al and incubated ($25-30^{\circ}C$) for 40 days at field capacity, were lower than the original soils. The change in the adorption maximum on incubation following the liming of soils was insignificant for other soils. The secondary adsorption maximum of soils, which received phosphorus equivalent to the Langmuir adsorption maximum of the limed soils incubated ($25-30^{\circ}C$) for 50 days at held capacity, was 74.5, 5.6 and 23.8% of the primary adsorption maximum for volcanic ash soils, non-cultivated soils, and cultivated soils respectively. The amount of phosphorus adsorbed by soils increased quadratically with the concentration of phosphorus solution added to the soils. The amount of phosphorus adsorbed by 5-g soil samples from 100ml of 100- and 1,000mg p/l solution for the mineral soils and volcanic ash soils respectively was found to be close to the Langmuir adsorption maximum. The amount of the phosphorus adsorbed at these concentrations is defined as a saturation adsorption maximum and proposed as a new parameter for the phosphorus adsorption capacity of the soil. The evaluation of the phosphorus adsorption capacity by the saturation adsorption maximum is regarded as a more practical method in that it obviates the need for the various concentrations used for the determination of the Langmuir adsorption maximum.

  • PDF

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

The Effect of the Chang in Forest Environment on physico-chemical Properhes of Soil Located in Seoul Royal Tomb (서울 왕릉지역의 산림환경변화가 토양 이.화학성에 미치는 영향)

  • Nam, Yi;Yee, Sun;Bae, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • The soil properties of the royal tombs (managed by cultural properties administration) located in Seoul and suburban Gyonggi area were investigated to see the influence of the change in soil environment on the royal tomb s이I. To compare the soil chemical properties of four royal tombs soil of Changdeokgung, Jongmyo, Seooneung, and Dongguneung, pH, organic content, available phosphate, extractable calcium, extractable potassium, extractable magnesium, cation exchange capacity, degree of base saturation, and total nitrogen content were measured. The concentrations of Cd, Pb, and Cu measured as the degree of heavy metal contamination can be an indication of atmospheric pollution in the soil environment. To estimate the degree of soil compaction, soil hardness, pore space, porosity, bulk density, and soil atmosphere were analyzed. Through these studies, following conclusions were made: 1. The soil hardness and pore space which can be used as indexes of soil compaction, were worse in the soil of Seooneung than in those of Changdeokgung and Dongguneury. These phenomena seem to be the result of increase in visitors in Seooneung and Dongguneung better and soil management in Changdeokgung and Dongguneung. When three different regions of forest area, prohibited area, and soil compaction area in Seooneung soil were compared, the degree of compaction in the forest area was less than compaction area, indicating the need for the employment of soil resting period in the compaction area. 2. The pH measurements of all four royal tombs soil were higher in top soil than sub soil. The higher soil pH values in Jongmyo and Seooneung seem to result from the application of soil conditioner. In the case of Seooneung, the values for soil pH and organic content were higher in the forest area than those in compaction area. It is thought that active soil management was employed in the forest area through application of organic matters and soil conditioners. 3. The heavy metal contents from soil of Changdeokgung and Jongmyo were higher than that from soil of Dongguneung. Since Changdeokgung and Jongmyo are located inside Seoul, it is thought that the high level of heavy metal concentrations in these royal tomb soil is the result of accumulation of pollutants from the city.

Breeding of Oriental Lily 'Pacific Wave' with Upward-facing and White Petals (상향 개화형 백색 오리엔탈나리 'Pacific Wave' 육성)

  • Rhee, Hye Kyung;Cho, Hae Ryong;Lim, Jin Hee;Kim, Mi Seon;Park, Sang Kun;Shin, Hak Ki;Joung, Hyang Young;Yae, Byeong Woo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.299-303
    • /
    • 2008
  • An Oriental lily cultivar 'Pacific Wave' was released in 2007 at National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Suwon, Korea. The crossing was made in 1999 between Oriental lily 'Simplon', an outward-facing and white colored cultivar, and 'Spinoza', pink colored cultivar. The first selection was done in 2003 with a line of 'O-03-16'. Multiplication and bulb growth, and performance test was conducted from 2004 to 2006. This selection was later on given as 'Pacific Wave' in 2007 at NHRI. Flowering time of 'Pacific Wave' in plastics house culture is mid June and grows average 115 cm. Flowers are upward-facing with 20.1 cm in diameter and white with yellow centered (RHS W155C + Y9A). Mean petal length and width is 12.2 cm and 4.2 cm, respectively. Leaves are 12.3 cm long, 2.9 cm wide. The throat color is green. It shows gray and purple stigma, and red brown pollen. The weight and size of bulb is 82.5 g and 19.6 cm, respectively. Year-round flowering can be by storing the bulb under -1 to $-2^{\circ}C$ conditions. It is necessary to add calcium to the fertilizer or remove side scales to prevent leaf scorch. It is needed to control Botrytis disease in summer wet season.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF